A206588
Number of solutions k of prime(k)=prime(n) (mod n), where 1<=k
0, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 1, 1, 1, 2, 1, 1, 0, 2, 0, 3, 1, 2, 2, 3, 1, 3, 1, 1, 2, 2, 1, 3, 1, 3, 2, 2, 1, 3, 1, 3, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 3, 0, 3, 0, 1, 1, 2, 0, 4, 1, 2, 1, 3, 1, 5, 1, 1, 0, 1, 0, 2, 0, 2, 1, 2
Offset: 2
Keywords
A206825
Number of solutions (n,k) of k^4=n^4 (mod n), where 1<=k
0, 0, 1, 0, 0, 0, 3, 2, 0, 0, 1, 0, 0, 0, 7, 0, 2, 0, 1, 0, 0, 0, 3, 4, 0, 8, 1, 0, 0, 0, 7, 0, 0, 0, 5, 0, 0, 0, 3, 0, 0, 0, 1, 2, 0, 0, 7, 6, 4, 0, 1, 0, 8, 0, 3, 0, 0, 0, 1, 0, 0, 2, 15, 0, 0, 0, 1, 0, 0, 0, 11, 0, 0, 4, 1, 0, 0, 0, 7, 26, 0, 0, 1, 0, 0, 0, 3, 0, 2, 0, 1, 0, 0, 0, 7, 0, 6, 2
Offset: 2
Keywords
Examples
8 divides exactly three of the numbers 8^4-k^4 for k = 1, 2 , ..., 7, so that a(8) = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 2..16384
Crossrefs
Cf. A206590.
Programs
-
Mathematica
s[k_] := k^4; f[n_, k_] := If[Mod[s[n] - s[k], n] == 0, 1, 0]; t[n_] := Flatten[Table[f[n, k], {k, 1, n - 1}]] a[n_] := Count[Flatten[t[n]], 1] Table[a[n], {n, 2, 120}] (* A206825 *)
-
PARI
A206825(n) = { my(n4 = n^4); sum(k=1,n-1,!((n4-(k^4))%n)); }; \\ Antti Karttunen, Nov 17 2017
A206826
Number of solutions (n,k) of s(k)=s(n) (mod n), where 1<=k
0, 2, 1, 2, 1, 2, 1, 2, 3, 2, 2, 2, 3, 4, 1, 2, 1, 2, 6, 3, 3, 2, 4, 2, 3, 2, 6, 2, 5, 2, 1, 3, 3, 8, 3, 2, 3, 4, 6, 2, 3, 2, 6, 3, 3, 2, 2, 2, 3, 5, 6, 2, 1, 8, 6, 5, 3, 2, 8, 2, 3, 5, 1, 8, 5, 2, 6, 4, 12, 2, 2, 2, 3, 3, 6, 8, 4, 2, 6, 2, 3, 2, 8, 8, 3, 3, 6, 2, 5, 8, 6, 4, 3, 8, 2, 2, 3, 4, 6
Offset: 1
Keywords
Examples
5 divides exactly two of the numbers s(n)-s(k) for k=1,2,3,4, so that a(5)=2.
Crossrefs
Cf. A206590.
Programs
-
Mathematica
s[k_] := k (k + 1) (k + 2)/6; f[n_, k_] := If[Mod[s[n] - s[k], n] == 0, 1, 0]; t[n_] := Flatten[Table[f[n, k], {k, 1, n - 1}]] a[n_] := Count[Flatten[t[n]], 1] Table[a[n], {n, 2, 120}] (* A206826 *)
Comments
Examples
Crossrefs
Programs
Mathematica