cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206603 Maximal apex value of an addition triangle whose base is a permutation of {k-n/2, k=0..n}.

Original entry on oeis.org

0, 0, 1, 4, 13, 36, 94, 232, 557, 1300, 2986, 6744, 15074, 33320, 73116, 159184, 344701, 742068, 1590898, 3395320, 7222550, 15308920, 32362276, 68213424, 143463378, 300999816, 630353764, 1317415792, 2748991012, 5726300880, 11911913912, 24742452128, 51331847709
Offset: 0

Views

Author

Alois P. Heinz, Feb 10 2012

Keywords

Comments

The base row of the addition triangle contains a permutation of the n+1 integers or half-integers {k-n/2, k=0..n}. Each number in a higher row is the sum of the two numbers directly below it. Rows above the base row contain only integers. The base row consists of integers iff n is even.
Because of symmetry, a(n) is also the absolute value of the minimal apex value of an addition triangle whose base is a permutation of {k-n/2, k=0..n}.
a(n) is odd iff n = 2^m and m > 0.

Examples

			a(3) =  4:   max:      4            min:    -4
                    1    3               -1   -3
                -1    2    1           1   -2   -1
            -3/2  1/2  3/2 -1/2    3/2 -1/2 -3/2  1/2
a(4) = 13:   max:     13            min:   -13
                     5  8                 -5 -8
                   0  5  3               0 -5 -3
                -2  2  3  0            2 -2 -3  0
              -2  0  2  1 -1         2  0 -2 -1  1
		

Crossrefs

Programs

  • Maple
    a:= n-> add (binomial(n, floor(k/2))*(k-n/2), k=0..n):
    seq (a(n), n=0..40);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, n*(n-1)/2,
          ((2*n^2-6)*a(n-1) +4*(n-1)*(n-4)*a(n-2)
           -8*(n-1)*(n-2)*a(n-3)) / (n*(n-2)))
        end:
    seq(a(n), n=0..40); # Alois P. Heinz, Apr 25 2013
  • Mathematica
    a = DifferenceRoot[Function[{y, n}, {8(n+1)(n+2)y[n] - 4(n-1)(n+2)y[n+1] - (2n^2 + 12n + 12)y[n+2] + (n+1)(n+3)y[n+3] == 0, y[0] == 0, y[1] == 0, y[2] == 1, y[3] == 4}]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k\2)*(k-n/2)); \\ Michel Marcus, Dec 20 2020
    
  • Python
    from math import comb
    def A206603(n): return sum(comb(n,k>>1)*((k<<1)-n) for k in range(n+1))>>1 # Chai Wah Wu, Oct 28 2024

Formula

a(n) = Sum_{k=0..n} C(n,floor(k/2)) * (k-n/2).
G.f.: (1-sqrt(1-4*x^2)) / (2*(2*x-1)^2).
a(n) = A189390(n)-A001787(n) = A001787(n)-A189391(n) = (A189390(n)-A189391(n))/2 = (A206604(n)-1)/2.