A206610
Fibonacci sequence beginning 13, 8.
Original entry on oeis.org
13, 8, 21, 29, 50, 79, 129, 208, 337, 545, 882, 1427, 2309, 3736, 6045, 9781, 15826, 25607, 41433, 67040, 108473, 175513, 283986, 459499, 743485, 1202984, 1946469, 3149453, 5095922, 8245375, 13341297, 21586672, 34927969, 56514641, 91442610, 147957251
Offset: 1
-
I:=[13, 8]; [n le 2 select I[n] else Self(n-1)+Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
-
LinearRecurrence[{1, 1}, {13, 8}, 80]
A354265
Array read by ascending antidiagonals for n >= 0 and k >= 0. Generalized Lucas numbers, L(n, k) = (psi^(k - 1)*(phi + n) - phi^(k - 1)*(psi + n)), where phi = (1 + sqrt(5))/2 and psi = (1 - sqrt(5))/2.
Original entry on oeis.org
2, 3, 1, 4, 4, 3, 5, 7, 7, 4, 6, 10, 11, 11, 7, 7, 13, 15, 18, 18, 11, 8, 16, 19, 25, 29, 29, 18, 9, 19, 23, 32, 40, 47, 47, 29, 10, 22, 27, 39, 51, 65, 76, 76, 47, 11, 25, 31, 46, 62, 83, 105, 123, 123, 76, 12, 28, 35, 53, 73, 101, 134, 170, 199, 199, 123
Offset: 0
Array starts:
[0] 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... A000032
[1] 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, ... A000032 (shifted)
[2] 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, ... A000032 (shifted)
[3] 5, 10, 15, 25, 40, 65, 105, 170, 275, 445, ... A022088
[4] 6, 13, 19, 32, 51, 83, 134, 217, 351, 568, ... A022388
[5] 7, 16, 23, 39, 62, 101, 163, 264, 427, 691, ... A190995
[6] 8, 19, 27, 46, 73, 119, 192, 311, 503, 814, ... A206420
[7] 9, 22, 31, 53, 84, 137, 221, 358, 579, 937, ... A206609
[8] 10, 25, 35, 60, 95, 155, 250, 405, 655, 1060, ...
[9] 11, 28, 39, 67, 106, 173, 279, 452, 731, 1183, ...
-
const FibMem = Dict{Int,Tuple{BigInt,BigInt}}()
function FibRec(n::Int)
get!(FibMem, n) do
n == 0 && return (BigInt(0), BigInt(1))
a, b = FibRec(div(n, 2))
c = a * (b * 2 - a)
d = a * a + b * b
iseven(n) ? (c, d) : (d, c + d)
end
end
function Lucas(n, k)
k == 0 && return BigInt(n + 2)
k == -1 && return BigInt(2 * n - 1)
k < 0 && return (-1)^k * Lucas(1 - n, -k - 2)
a, b = FibRec(k)
c, d = FibRec(k - 1)
n * (2 * a + b) + 2 * c + d
end
for n in -6:6
println([Lucas(n, k) for k in -6:6])
end
-
phi := (1 + sqrt(5))/2: psi := (1 - sqrt(5))/2:
L := (n, k) -> phi^(k+1)*(n - psi) + psi^(k+1)*(n - phi):
seq(seq(simplify(L(n-k, k)), k = 0..n), n = 0..10);
-
L[n_, k_] := With[{c = Pi/2 + I*ArcCsch[2]},
I^k Sec[c] (n Cos[c (k + 1)] - I Cos[c k]) ];
Table[Simplify[L[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm
(* Alternative: *)
L[n_, k_] := n*LucasL[k + 1] + LucasL[k];
Table[Simplify[L[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm
A206611
Fibonacci sequence beginning 13, 7.
Original entry on oeis.org
13, 7, 20, 27, 47, 74, 121, 195, 316, 511, 827, 1338, 2165, 3503, 5668, 9171, 14839, 24010, 38849, 62859, 101708, 164567, 266275, 430842, 697117, 1127959, 1825076, 2953035, 4778111, 7731146, 12509257, 20240403, 32749660, 52990063, 85739723, 138729786
Offset: 1
-
I:=[13, 7]; [n le 2 select I[n] else Self(n-1)+Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
-
LinearRecurrence[{1, 1}, {13, 7}, 80]
Showing 1-3 of 3 results.
Comments