cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206739 G.f.: 1/(1 - x/(1 - x^4/(1 - x^9/(1 - x^16/(1 - x^25/(1 - x^36/(1 -...- x^(n^2)/(1 -...))))))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 37, 52, 72, 99, 138, 193, 269, 373, 518, 722, 1006, 1399, 1944, 2705, 3766, 5241, 7290, 10141, 14112, 19638, 27323, 38012, 52889, 73593, 102398, 142470, 198225, 275809, 383760, 533954, 742923, 1033685, 1438254
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(Range[nmax + 1]^2)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 24 2017 *)
  • Maxima
    T(n, m):=if n=m then 1 else  sum(binomial(m, i)*T((n-m)/3, i), i, 1, (n-m)/3);
    makelist(sum(T(n,k),k,0,n),n,0,20); /* Vladimir Kruchinin, Mar 21 2015 */
  • PARI
    {a(n)=local(CF=1+x*O(x^n),M=sqrtint(n+1)); for(k=0, M, CF=1/(1-x^((M-k+1)^2)*CF)); polcoeff(CF, n, x)}
    for(n=0,55,print1(a(n),", "))
    
  • PARI
    N = 66;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 - q^((k+1)^2) / G(k+1) );
    gf = 1 / G(0);
    Vec(gf) \\ Joerg Arndt, Jul 06 2013
    

Formula

a(n) = sum(k=0..n, T(n,k)), where T(n, m)=sum(i=1..(n-m)/3, binomial(m, i)*T((n-m)/3,i)), T(n,n)=1. - Vladimir Kruchinin, Mar 21 2015
G.f.: A(x)=1/B(x), where B(x) is g.f. of A290975. - Seiichi Manyama, Aug 18 2017
a(n) ~ c * d^n, where d = 1.391377080590304271048017099353... and c = 0.3625537262803710555422183139... - Vaclav Kotesovec, Aug 24 2017