A206778 Irregular triangle in which n-th row lists squarefree divisors (A005117) of n.
1, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 1, 3, 1, 2, 5, 10, 1, 11, 1, 2, 3, 6, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 2, 1, 17, 1, 2, 3, 6, 1, 19, 1, 2, 5, 10, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 6, 1, 5, 1, 2, 13, 26, 1, 3, 1, 2, 7, 14, 1, 29
Offset: 1
Examples
Triangle begins: . 1: [1] . 2: [1, 2] . 3: [1, 3] . 4: [1, 2] . 5: [1, 5] . 6: [1, 2, 3, 6] . 7: [1, 7] . 8: [1, 2] . 9: [1, 3] . 10: [1, 2, 5, 10] . 11: [1, 11] . 12: [1, 2, 3, 6].
Links
- Reinhard Zumkeller, Rows n=1..1000 of triangle, flattened
Crossrefs
Programs
-
Haskell
a206778 n k = a206778_row n !! k a206778_row = filter ((== 1) . a008966) . a027750_row a206778_tabf = map a206778_row [1..] -- Reinhard Zumkeller, May 03 2013, Feb 12 2012
-
Maple
A206778 := proc(n) local sqdvs ,nfac,d; sqdvs := {} ; nfac := ifactors(n)[2] ; for d in numtheory[divisors](n) do if issqrfree(d) then sqdvs := sqdvs union {d} ; end if; end do: sort(sqdvs) ; end proc: seq(op(A206778(n)),n=1..10) ; # R. J. Mathar, Mar 06 2023
-
Mathematica
Flatten[Table[Select[Divisors[n],SquareFreeQ],{n,30}]] (* Harvey P. Dale, Apr 11 2012 *)
-
PARI
row(n) = select(x -> issquarefree(x), divisors(n)); \\ Amiram Eldar, May 02 2025