cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206902 Number of nonisomorphic graded posets with 0 and uniform Hasse diagram of rank n with no 3-element antichain.

Original entry on oeis.org

1, 2, 8, 36, 166, 768, 3554, 16446, 76102, 352152, 1629536, 7540458, 34892452, 161460114, 747134894, 3457265922, 15998031616, 74028732924, 342557973998, 1585140808368, 7335025230994, 33941839649382, 157061283704438, 726779900373936, 3363075935260696
Offset: 0

Views

Author

David Nacin, Feb 13 2012

Keywords

Comments

We do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length.
Uniform (in the definition) used in the sense of Retakh, Serconek and Wilson (see paper in Links lines). - David Nacin, Mar 01 2012

Crossrefs

Cf. A025192 (adding a unique maximal element).
Cf. A124292, A206901 (dropping uniformity with and without maximal element).

Programs

  • GAP
    a:=[2,8,36];; for n in [4..30] do a[n]:=6*a[n-1]-7*a[n-2]+3*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, May 21 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-4*x +3*x^2-x^3)/(1-6*x+7*x^2-3*x^3) )); // G. C. Greubel, May 21 2019
    
  • Mathematica
    LinearRecurrence[{6,-7,3}, {1,2,8,36}, 30] (* Vincenzo Librandi, Feb 27 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-4*x+3*x^2-x^3)/(1-6*x+7*x^2-3*x^3)) \\ G. C. Greubel, May 21 2019
    
  • Python
    def a(n, adict={1:2,2:8,3:36}):
        if n in adict:
            return adict[n]
        adict[n]=6*a(n-1)-7*a(n-2)+3*a(n-3)
        return adict[n]
    
  • Sage
    ((1-4*x+3*x^2-x^3)/(1-6*x+7*x^2-3*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 21 2019
    

Formula

a(n) = 6*a(n-1) - 7*a(n-2) + 3*a(n-3), a(1)=2, a(2)=8, a(3)=36.
G.f.: (1 -4*x +3*x^2 -x^3)/(1 -6*x +7*x^2 -3*x^3).