A206902 Number of nonisomorphic graded posets with 0 and uniform Hasse diagram of rank n with no 3-element antichain.
1, 2, 8, 36, 166, 768, 3554, 16446, 76102, 352152, 1629536, 7540458, 34892452, 161460114, 747134894, 3457265922, 15998031616, 74028732924, 342557973998, 1585140808368, 7335025230994, 33941839649382, 157061283704438, 726779900373936, 3363075935260696
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (6,-7,3).
Crossrefs
Programs
-
GAP
a:=[2,8,36];; for n in [4..30] do a[n]:=6*a[n-1]-7*a[n-2]+3*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, May 21 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-4*x +3*x^2-x^3)/(1-6*x+7*x^2-3*x^3) )); // G. C. Greubel, May 21 2019 -
Mathematica
LinearRecurrence[{6,-7,3}, {1,2,8,36}, 30] (* Vincenzo Librandi, Feb 27 2012 *)
-
PARI
my(x='x+O('x^30)); Vec((1-4*x+3*x^2-x^3)/(1-6*x+7*x^2-3*x^3)) \\ G. C. Greubel, May 21 2019
-
Python
def a(n, adict={1:2,2:8,3:36}): if n in adict: return adict[n] adict[n]=6*a(n-1)-7*a(n-2)+3*a(n-3) return adict[n]
-
Sage
((1-4*x+3*x^2-x^3)/(1-6*x+7*x^2-3*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 21 2019
Formula
a(n) = 6*a(n-1) - 7*a(n-2) + 3*a(n-3), a(1)=2, a(2)=8, a(3)=36.
G.f.: (1 -4*x +3*x^2 -x^3)/(1 -6*x +7*x^2 -3*x^3).
Comments