cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A214753 Number T(n,k) of solid standard Young tableaux of n cells and height = k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 4, 1, 0, 10, 16, 6, 1, 0, 26, 66, 34, 8, 1, 0, 76, 296, 192, 58, 10, 1, 0, 232, 1334, 1134, 406, 88, 12, 1, 0, 764, 6322, 6716, 2918, 730, 124, 14, 1, 0, 2620, 30930, 40872, 20718, 6118, 1186, 166, 16, 1, 0, 9496, 158008, 255308, 149826, 50056, 11310, 1796, 214, 18, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 02 2012

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,   1;
  0,   2,    1;
  0,   4,    4,    1;
  0,  10,   16,    6,   1;
  0,  26,   66,   34,   8,  1;
  0,  76,  296,  192,  58, 10,  1;
  0, 232, 1334, 1134, 406, 88, 12,  1;
		

Crossrefs

Columns k=0-10 give: A000007(n), A000085(n) for n>0, A273582, A273583, A273584, A273585, A273586, A273587, A273588, A273589, A273590.
Diagonal and lower diagonal give: A000012, A005843.
Row sums give: A207542.
T(2n,n) gives A273591.
Cf. A215086.

Programs

  • Maple
    b:= proc(n, k, l) option remember; `if`(n=0, 1,
           b(n-1, k, [l[], [1]])+ add(`if`(i=1 or nops(l[i]) `if`(k=0, `if`(n=0, 1, 0), b(n, min(n, k), [])):
    T:= (n, k)-> A(n,k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, k_, L_] := b[n, k, L] = If[n == 0, 1, b[n-1, k, Append[L, {1}]] + Sum[If[i == 1 || Length[L[[i]]] < Length[L[[i-1]]], b[n-1, k, ReplacePart[L, i -> Append[L[[i]], 1]]], 0] + Sum[If[L[[i, j]] < k && (i == 1 || L[[i, j]] < L[[i-1, j]]) && (j == 1 || L[[i, j]] < L[[i, j-1]]), b[n-1, k, ReplacePart[L, i -> ReplacePart[ L[[i]], j -> L[[i, j]]+1]]], 0], {j, 1, Length[L[[i]]]}], {i, 1, Length[L]}]];
    A[n_, k_] := If[k == 0, If[n == 0, 1, 0], b[n, Min[n, k], {}]];
    T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, May 23 2016, after Alois P. Heinz *)

Formula

T(n,k) = A215086(n,k) - A215086(n,k-1) for k>0, T(n,0) = A215086(n,0) = A000007(n).

A215086 Number A(n,k) of solid standard Young tableaux of n cells and height <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 4, 0, 1, 1, 3, 8, 10, 0, 1, 1, 3, 9, 26, 26, 0, 1, 1, 3, 9, 32, 92, 76, 0, 1, 1, 3, 9, 33, 126, 372, 232, 0, 1, 1, 3, 9, 33, 134, 564, 1566, 764, 0, 1, 1, 3, 9, 33, 135, 622, 2700, 7086, 2620, 0, 1, 1, 3, 9, 33, 135, 632, 3106, 13802, 33550, 9496, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 02 2012

Keywords

Examples

			Square array A(n,k) begins:
  1,   1,    1,    1,    1,    1,    1,    1, ...
  0,   1,    1,    1,    1,    1,    1,    1, ...
  0,   2,    3,    3,    3,    3,    3,    3, ...
  0,   4,    8,    9,    9,    9,    9,    9, ...
  0,  10,   26,   32,   33,   33,   33,   33, ...
  0,  26,   92,  126,  134,  135,  135,  135, ...
  0,  76,  372,  564,  622,  632,  633,  633, ...
  0, 232, 1566, 2700, 3106, 3194, 3206, 3207, ...
		

Crossrefs

Rows n=0-1 give: A000012, A057427.
Main diagonal gives A207542.
Cf. A214753.

Programs

  • Maple
    b:= proc(n, k, l) option remember; `if`(n=0, 1,
           b(n-1, k, [l[], [1]])+ add(`if`(i=1 or nops(l[i]) `if`(k=0, `if`(n=0, 1, 0), b(n, min(n, k), [])):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, k_, l_] := b[n, k, l] = If[n==0, 1, b[n-1, k, Append[l, {1}]] + Sum[If[i==1 || Length[l[[i]]] Append[l[[i]], 1]]], 0] + Sum[If[l[[i, j]] ReplacePart[ l[[i]], j -> l[[i, j]]+1]]], 0], {j, 1, Length[l[[i]]]} ], {i, 1, Length[l]}]]; A[n_, k_] := If[k==0, If[n==0, 1, 0], b[n, Min[n, k], {}]]; Table[A[n, d-n], {d, 0, 11}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 26 2017, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..k} A214753(n,i).

A323657 Number of strict solid partitions of n.

Original entry on oeis.org

1, 1, 1, 4, 4, 7, 16, 19, 28, 40, 82, 94, 145, 190, 274, 463, 580, 802, 1096, 1486, 1948, 3148, 3811, 5314, 6922, 9394, 11971, 16156, 23044, 28966, 38368, 50002, 65116, 83872, 108706, 137917, 192070, 236242, 308698, 390772, 506935, 633982, 817324, 1018090
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2019

Keywords

Comments

A strict solid partition is an infinite three-dimensional array of distinct positive integers (and any number of zeros) summing to n such that all one-dimensional sections are strictly decreasing until they become all zeros.

Examples

			The a(1) = 1 through a(6) = 16 strict solid partitions, represented as chains of chains of integer partitions:
  ((1))  ((2))  ((3))       ((4))       ((5))       ((6))
                ((21))      ((31))      ((32))      ((42))
                ((2)(1))    ((3)(1))    ((41))      ((51))
                ((2))((1))  ((3))((1))  ((3)(2))    ((321))
                                        ((4)(1))    ((4)(2))
                                        ((3))((2))  ((5)(1))
                                        ((4))((1))  ((31)(2))
                                                    ((32)(1))
                                                    ((4))((2))
                                                    ((5))((1))
                                                    ((31))((2))
                                                    ((3)(2)(1))
                                                    ((32))((1))
                                                    ((3)(1))((2))
                                                    ((3)(2))((1))
                                                    ((3))((2))((1))
		

Crossrefs

Cf. A000219, A000293 (solid partitions), A000334, A001970, A002974, A008289, A114736, A117433 (strict plane partitions), A207542, A321662, A323657.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
    strplptns[n_]:=Join@@Table[Select[ptnplane[Times@@Prime/@y],And[And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}]
    Table[Length[Join@@Table[Select[Tuples[strplptns/@y],And[UnsameQ@@Flatten[#],And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)])]&],{y,IntegerPartitions[n]}]],{n,10}]

Formula

a(n) = Sum_{k=1..n} A008289(n,k)*A207542(k) for n > 0. - John Tyler Rascoe, Dec 19 2024

Extensions

a(21) onwards from John Tyler Rascoe, Dec 19 2024

A215120 Number T(n,k) of solid standard Young tableaux of n cells and height >= k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 9, 9, 5, 1, 33, 33, 23, 7, 1, 135, 135, 109, 43, 9, 1, 633, 633, 557, 261, 69, 11, 1, 3207, 3207, 2975, 1641, 507, 101, 13, 1, 17589, 17589, 16825, 10503, 3787, 869, 139, 15, 1, 102627, 102627, 100007, 69077, 28205, 7487, 1369, 183, 17, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 03 2012

Keywords

Examples

			Triangle T(n,k) begins:
     1;
     1,    1;
     3,    3,    1;
     9,    9,    5,    1;
    33,   33,   23,    7,   1;
   135,  135,  109,   43,   9,   1;
   633,  633,  557,  261,  69,  11,  1;
  3207, 3207, 2975, 1641, 507, 101, 13,  1;
  ...
		

Crossrefs

Column k=0 gives: A207542.
Diagonal and lower diagonal give: A000012, A005408.
T(2n,n) gives A385413.

Programs

  • Maple
    b:= proc(n, k, l) option remember; `if`(n=0, 1,
           b(n-1, k, [l[], [1]])+ add(`if`(i=1 or nops(l[i]) `if`(k=0, `if`(n=0, 1, 0), b(n, min(n, k), [])):
    H:= (n, k)-> A(n,k) -`if`(k=0, 0, A(n, k-1)):
    T:= proc(n, k) option remember; `if`(k=n, 1, T(n, k+1)+ H(n, k)) end:
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, k_, L_] := b[n, k, L] = If[n == 0, 1, b[n - 1, k, Append[L, {1}]] + Sum[If[i == 1 || Length[L[[i]]] < Length[L[[i - 1]]], b[n - 1, k, ReplacePart[L, i -> Append[L[[i]], 1]]], 0] + Sum[If[L[[i, j]] < k && (i == 1 || L[[i, j]] < L[[i - 1, j]]) && (j == 1 || L[[i, j]] < L[[i, j - 1]]), b[n - 1, k, ReplacePart[L, i -> ReplacePart[L[[i]], j -> L[[i, j]] + 1]]], 0], {j, 1, Length[L[[i]]]}], {i, 1, Length[L]}]];
    A[n_, k_] := If[k == 0, If[n == 0, 1, 0], b[n, Min[n, k], {}]];
    H[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
    T[n_, n_] = 1;
    T[n_, k_] := T[n, k] = T[n, k + 1] + H[n, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 28 2022, after Alois P. Heinz *)

Formula

T(n,n) = 1, T(n,k) = T(n,k+1) + A214753(n,k) for k

A379277 Number of solid partitions with multiplicities of parts matching the n-th composition in standard order.

Original entry on oeis.org

1, 3, 3, 6, 9, 6, 9, 13, 21, 24, 33, 13, 21, 24, 33, 24, 48, 57, 84, 51, 93, 90, 135, 24, 48, 57, 84, 51, 93, 90, 135, 48, 102, 144, 213, 138, 258, 252, 387, 111, 228, 282, 426, 219, 417, 408, 633, 48, 102, 144, 213, 138, 258, 252, 387, 111, 228, 282, 426, 219
Offset: 1

Author

John Tyler Rascoe, Dec 19 2024

Keywords

Examples

			The 5th composition in standard order, (2,1) corresponds to a solid partition with 3 parts (a,b,c) with a = b and a > c. There are 9 ways to arrange these parts into valid a solid partition giving a(5) = 9.
		

Crossrefs

Programs

  • Python
    # see links

Formula

a(2^k) = A000219(k+1).
a(2^k-1) = A207542(k) for k > 0.

A379278 Number of solid partitions of n such that all parts occur with the same multiplicity.

Original entry on oeis.org

1, 1, 4, 10, 20, 31, 97, 105, 228, 466, 657, 953, 2958, 2675, 4884, 11635, 13485, 19136, 58099, 48816, 89138, 219474, 197247, 296097, 1026590, 713425, 1099311, 3386891, 2744274, 3788578, 15225795, 8562311, 13588731, 47251379, 28547765, 43887961, 200572890, 90616026
Offset: 0

Author

John Tyler Rascoe, Dec 19 2024

Keywords

Examples

			For a(3) = 10 there are 6 arrangements of parts (1,1,1), 3 arrangements of parts (2,1), and 1 arrangement of (3).
		

Crossrefs

Programs

  • Python
    # see links

Extensions

a(27)-a(37) from Bert Dobbelaere, Apr 24 2025
Showing 1-6 of 6 results.