cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A214753 Number T(n,k) of solid standard Young tableaux of n cells and height = k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 4, 1, 0, 10, 16, 6, 1, 0, 26, 66, 34, 8, 1, 0, 76, 296, 192, 58, 10, 1, 0, 232, 1334, 1134, 406, 88, 12, 1, 0, 764, 6322, 6716, 2918, 730, 124, 14, 1, 0, 2620, 30930, 40872, 20718, 6118, 1186, 166, 16, 1, 0, 9496, 158008, 255308, 149826, 50056, 11310, 1796, 214, 18, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 02 2012

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,   1;
  0,   2,    1;
  0,   4,    4,    1;
  0,  10,   16,    6,   1;
  0,  26,   66,   34,   8,  1;
  0,  76,  296,  192,  58, 10,  1;
  0, 232, 1334, 1134, 406, 88, 12,  1;
		

Crossrefs

Columns k=0-10 give: A000007(n), A000085(n) for n>0, A273582, A273583, A273584, A273585, A273586, A273587, A273588, A273589, A273590.
Diagonal and lower diagonal give: A000012, A005843.
Row sums give: A207542.
T(2n,n) gives A273591.
Cf. A215086.

Programs

  • Maple
    b:= proc(n, k, l) option remember; `if`(n=0, 1,
           b(n-1, k, [l[], [1]])+ add(`if`(i=1 or nops(l[i]) `if`(k=0, `if`(n=0, 1, 0), b(n, min(n, k), [])):
    T:= (n, k)-> A(n,k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, k_, L_] := b[n, k, L] = If[n == 0, 1, b[n-1, k, Append[L, {1}]] + Sum[If[i == 1 || Length[L[[i]]] < Length[L[[i-1]]], b[n-1, k, ReplacePart[L, i -> Append[L[[i]], 1]]], 0] + Sum[If[L[[i, j]] < k && (i == 1 || L[[i, j]] < L[[i-1, j]]) && (j == 1 || L[[i, j]] < L[[i, j-1]]), b[n-1, k, ReplacePart[L, i -> ReplacePart[ L[[i]], j -> L[[i, j]]+1]]], 0], {j, 1, Length[L[[i]]]}], {i, 1, Length[L]}]];
    A[n_, k_] := If[k == 0, If[n == 0, 1, 0], b[n, Min[n, k], {}]];
    T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, May 23 2016, after Alois P. Heinz *)

Formula

T(n,k) = A215086(n,k) - A215086(n,k-1) for k>0, T(n,0) = A215086(n,0) = A000007(n).

A207542 Number of solid standard Young tableaux with n cells.

Original entry on oeis.org

1, 1, 3, 9, 33, 135, 633, 3207, 17589, 102627, 636033, 4161141, 28680717, 207318273, 1567344549, 12345147705, 101013795753, 856212871761, 7501911705747, 67815650852235, 631574151445665, 6051983918989833, 59605200185016639, 602764245172225251, 6252962956009863363
Offset: 0

Views

Author

Matthew C. Russell, Feb 24 2012

Keywords

Comments

A solid standard Young tableaux (SSYT) with n cells is a way of placing the integers from 1 to n in a 3D Young diagram of a plane partition with the property that the entries increase from left to right, back to front, and bottom to top.
It is also the number of almost topological sequences (ATS) for the set N^3 at depth n with (N=set of nonnegative integers). See Balakrishnan et al. for definition and a proof of the bijection between SSYT and ATS. - Suresh Govindarajan, Mar 02 2012
Also the number of paths from a plane partition to the empty partition by repeated trimming. - Wouter Meeussen, Sep 03 2025

Crossrefs

Rows sums of A214753.
Main diagonal of A215086.
Column k=0 of A215120. - Alois P. Heinz, May 12 2014

Programs

  • Mathematica
    b[n_, k_, L_] := b[n, k, L] = If[n == 0, 1, b[n - 1, k, Append[L, {1}]] + Sum[If[i == 1 || Length[L[[i]]] < Length[L[[i - 1]]], b[n - 1, k, ReplacePart[L, i -> Append[L[[i]], 1]]], 0] + Sum[If[L[[i, j]] < k && (i == 1 || L[[i, j]] < L[[i - 1, j]]) && (j == 1 || L[[i, j]] < L[[i, j - 1]]), b[n - 1, k, ReplacePart[L, i -> ReplacePart[L[[i]], j -> L[[i, j]] + 1]]], 0], {j, 1, Length[L[[i]]]}], {i, 1, Length[L]}]];
    A[n_, k_] := If[k == 0, If[n == 0, 1, 0], b[n, Min[n, k], {}]];
    T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
    a[n_] := a[n] = Sum[T[n, k], {k, 0, n}];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 28 2022, after Alois P. Heinz in A214753 *)

A215120 Number T(n,k) of solid standard Young tableaux of n cells and height >= k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 9, 9, 5, 1, 33, 33, 23, 7, 1, 135, 135, 109, 43, 9, 1, 633, 633, 557, 261, 69, 11, 1, 3207, 3207, 2975, 1641, 507, 101, 13, 1, 17589, 17589, 16825, 10503, 3787, 869, 139, 15, 1, 102627, 102627, 100007, 69077, 28205, 7487, 1369, 183, 17, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 03 2012

Keywords

Examples

			Triangle T(n,k) begins:
     1;
     1,    1;
     3,    3,    1;
     9,    9,    5,    1;
    33,   33,   23,    7,   1;
   135,  135,  109,   43,   9,   1;
   633,  633,  557,  261,  69,  11,  1;
  3207, 3207, 2975, 1641, 507, 101, 13,  1;
  ...
		

Crossrefs

Column k=0 gives: A207542.
Diagonal and lower diagonal give: A000012, A005408.
T(2n,n) gives A385413.

Programs

  • Maple
    b:= proc(n, k, l) option remember; `if`(n=0, 1,
           b(n-1, k, [l[], [1]])+ add(`if`(i=1 or nops(l[i]) `if`(k=0, `if`(n=0, 1, 0), b(n, min(n, k), [])):
    H:= (n, k)-> A(n,k) -`if`(k=0, 0, A(n, k-1)):
    T:= proc(n, k) option remember; `if`(k=n, 1, T(n, k+1)+ H(n, k)) end:
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, k_, L_] := b[n, k, L] = If[n == 0, 1, b[n - 1, k, Append[L, {1}]] + Sum[If[i == 1 || Length[L[[i]]] < Length[L[[i - 1]]], b[n - 1, k, ReplacePart[L, i -> Append[L[[i]], 1]]], 0] + Sum[If[L[[i, j]] < k && (i == 1 || L[[i, j]] < L[[i - 1, j]]) && (j == 1 || L[[i, j]] < L[[i, j - 1]]), b[n - 1, k, ReplacePart[L, i -> ReplacePart[L[[i]], j -> L[[i, j]] + 1]]], 0], {j, 1, Length[L[[i]]]}], {i, 1, Length[L]}]];
    A[n_, k_] := If[k == 0, If[n == 0, 1, 0], b[n, Min[n, k], {}]];
    H[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
    T[n_, n_] = 1;
    T[n_, k_] := T[n, k] = T[n, k + 1] + H[n, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 28 2022, after Alois P. Heinz *)

Formula

T(n,n) = 1, T(n,k) = T(n,k+1) + A214753(n,k) for k

A215087 Number of solid standard Young tableaux of n cells and height <= 2.

Original entry on oeis.org

1, 1, 3, 8, 26, 92, 372, 1566, 7086, 33550, 167504, 873226, 4764614, 26947632, 157926628, 954523378, 5945067490, 38060781922, 250345198424, 1688978186742, 11679437620552, 82652840640478, 598018846154666, 4418072084681592, 33298670603875846, 255782905412464810
Offset: 0

Author

Alois P. Heinz, Aug 02 2012

Keywords

Crossrefs

Column k=2 of A215086.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1,
           b(n-1, [l[], [1]])+ add(`if`(i=1 or nops(l[i]) b(n, []):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, b[n - 1, Append[l, {1}]] + Sum[If[i == 1 || Length[l[[i]]] < Length[l[[i - 1]]], b[n - 1, ReplacePart[l, i -> Append[l[[i]], 1]]], 0] + Sum[If[l[[i, j]] < 2 && (i == 1 || l[[i, j]] < l[[i - 1, j]]) && (j == 1 || l[[i, j]] < l[[i, j - 1]]), b[n - 1, ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] + 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, Length[l]}]];
    a[n_] := b[n, {}];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 01 2023, after Alois P. Heinz *)

A320180 Number of solid standard Young tableaux of n cells and height <= 3.

Original entry on oeis.org

1, 1, 3, 9, 32, 126, 564, 2700, 13802, 74422, 422812, 2519962, 15731562, 102390662, 692779852, 4851392308, 35068814616, 261013287116, 1997276928946, 15689964298430, 126416353430344, 1043615269337354, 8819704403143576, 76229300376178238, 673190822341507644
Offset: 0

Author

Alois P. Heinz, Oct 07 2018

Keywords

Crossrefs

Column k=3 of A215086.

A320181 Number of solid standard Young tableaux of n cells and height <= 4.

Original entry on oeis.org

1, 1, 3, 9, 33, 134, 622, 3106, 16720, 95140, 572638, 3621722, 24046746, 166799374, 1205714772, 9043761626, 70185282194, 561924753756, 4632640872604, 39262210040594, 341678806496748, 3050007040331626, 27902744129363050, 261376205797957108, 2504865765980461010
Offset: 0

Author

Alois P. Heinz, Oct 07 2018

Keywords

Crossrefs

Column k=4 of A215086.

A320182 Number of solid standard Young tableaux of n cells and height <= 5.

Original entry on oeis.org

1, 1, 3, 9, 33, 135, 632, 3194, 17450, 101258, 622694, 4034892, 27489676, 196054798, 1459552844, 11297662922, 90648769970, 751732064930, 6429192275568, 56603447925754, 512309058662574, 4761135417168102, 45389581888641760, 443470604659923172, 4436647328514208908
Offset: 0

Author

Alois P. Heinz, Oct 07 2018

Keywords

Crossrefs

Column k=5 of A215086.

A320183 Number of solid standard Young tableaux of n cells and height <= 6.

Original entry on oeis.org

1, 1, 3, 9, 33, 135, 633, 3206, 17574, 102444, 634004, 4139104, 28450444, 204936318, 1542796630, 12090425696, 98341974504, 827789394188, 7194985058192, 64450636832800, 594124150130062, 5628903025067656, 54753047168362054, 546261960780208350, 5584759231202910230
Offset: 0

Author

Alois P. Heinz, Oct 07 2018

Keywords

Crossrefs

Column k=6 of A215086.

A320184 Number of solid standard Young tableaux of n cells and height <= 7.

Original entry on oeis.org

1, 1, 3, 9, 33, 135, 633, 3207, 17588, 102610, 635800, 4158270, 28646346, 206925540, 1562928436, 12295935458, 100464068006, 850030211990, 7431638110124, 67007477760634, 622164698873152, 5941062844925200, 58280974293944802, 586748859836258212, 6056670347690677380
Offset: 0

Author

Alois P. Heinz, Oct 07 2018

Keywords

Crossrefs

Column k=7 of A215086.

A320185 Number of solid standard Young tableaux of n cells and height <= 8.

Original entry on oeis.org

1, 1, 3, 9, 33, 135, 633, 3207, 17589, 102626, 636014, 4160852, 28676800, 207267046, 1566709436, 12337438198, 100921477976, 855109095248, 7488671736398, 67655656640892, 629623562927598, 6027970886933100, 59306595225701588, 599011729235408510, 6205282969563030610
Offset: 0

Author

Alois P. Heinz, Oct 07 2018

Keywords

Crossrefs

Column k=8 of A215086.
Showing 1-10 of 12 results. Next