cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207641 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1+x^k)/(1-x^k).

Original entry on oeis.org

1, 1, 3, 5, 9, 15, 25, 39, 61, 93, 139, 205, 299, 429, 611, 861, 1201, 1663, 2285, 3115, 4221, 5683, 7605, 10123, 13405, 17661, 23163, 30245, 39323, 50925, 65699, 84445, 108167, 138089, 175719, 222921, 281965, 355627, 447309, 561139, 702133, 876395, 1091301
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In Ramanujan's equation let a = x and b = 1. - Michael Somos, Nov 20 2015

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 9*x^4 + 15*x^5 + 25*x^6 + 39*x^7 +...
such that, by definition,
A(x) = 1 + x*(1+x)/(1-x) + x^2*(1+x)*(1+x^2)/((1-x)*(1-x^2)) + x^3*(1+x)*(1+x^2)*(1+x^3)/((1-x)*(1-x^2)*(1-x^3)) +...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 370, 9th equation.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-x}, {}, x, x], {x, 0, n}]; (* Michael Somos, Mar 11 2014 *)
    a[ n_] := SeriesCoefficient[ 1 / ((1 + x) EllipticTheta[ 4, 0, x]), {x, 0, n}]; (* Michael Somos, Nov 20 2015 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^m*prod(k=1,m,(1+x^k)/(1-x^k +x*O(x^n))) ),n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / ((1 + x) * eta(x + A)^2), n))}; /* Michael Somos, Nov 20 2015 */

Formula

Expansion of 1 / ((1 + x) * phi(-x)) in powers of x where phi() is a Ramanujan theta function. - Michael Somos, Nov 20 2015
G.f.: 1 + x*(1+x) * (1 / (1-x)^2 + 2*x^3 / ((1-x)*(1-x^2))^2 + 2*x^7*(1+x) / ((1-x)*(1-x^2)*(1-x^3))^2 + 2*x^12*(1+x)*(1+x^2) / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4))^2 + ...). [Ramanujan] - Michael Somos, Nov 20 2015
a(n) + a(n+1) = A015128(n+1) for n >= 0. - Seiichi Manyama, Jul 12 2018
a(n) ~ exp(Pi*sqrt(n)) / (16*n). - Vaclav Kotesovec, Jun 18 2019