cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207642 Expansion of g.f.: Sum_{n>=0} x^n * Product_{k=0..n-1} (1 + x^(n+k)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 3, 3, 2, 4, 4, 4, 4, 5, 6, 6, 6, 6, 8, 9, 8, 10, 10, 10, 12, 14, 14, 14, 15, 16, 19, 20, 20, 22, 24, 24, 26, 28, 30, 34, 34, 35, 38, 40, 42, 46, 50, 50, 54, 58, 60, 63, 66, 70, 76, 80, 84, 88, 92, 96, 102, 108, 112, 120, 126, 131, 140, 146, 151
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2012

Keywords

Comments

Conjecture: a(n) is the number of partitions p of n into distinct parts such that max(p) <= 1 + 2*min(p), for n >= 1 (as in the Mathematica program at A241061). - Clark Kimberling, Apr 16 2014

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 2*x^9 + 4*x^10 + 4*x^11 + 4*x^12 + 4*x^13 + 5*x^14 + 6*x^15 + 6*x^16 + 6*x^17 + ...
such that, by definition,
A(x) = 1 + x*(1 + x) + x^2*(1 + x^2)*(1 + x^3) + x^3*(1 + x^3)*(1 + x^4)*(1 + x^5) + x^4*(1 + x^4)*(1 + x^5)*(1 + x^6)*(1 + x^7) + x^5*(1 + x^5)*(1 + x^6)*(1 + x^7)*(1 + x^8)*(1 + x^9) + ... + x^n*Product_{k=0..n-1} (1 + x^(n+k)) + ...
Also
A(x) = 1/(1 - x)  +  x^2/((1 - x^2)*(1 - x^3))  +  x^7/((1 - x^3)*(1 - x^4)*(1 - x^5))  +  x^15/((1 - x^4)*(1 - x^5)*(1 - x^6)*(1 - x^7))  +  x^26/((1 - x^5)*(1 - x^6)*(1 - x^7)*(1 - x^8)*(1 - x^9)) + ... + x^(n*(3*n+1)/2)/(Product_{k=0..n} 1 - x^(n+k+1)) + ...
		

Crossrefs

Programs

  • Magma
    m:=80; R:=PowerSeriesRing(Integers(), m); [1] cat Coefficients(R!( (&+[x^n*(&*[1+x^(n+j): j in [0..n-1]]) : n in [1..m]]) )); // G. C. Greubel, Jan 12 2019
    
  • Mathematica
    With[{m = 80}, CoefficientList[Series[Sum[x^n*Product[1+x^(n+j), {j,0, n-1}], {n,0,m}], {x,0,m}], x]] (* G. C. Greubel, Jan 12 2019 *)
    nmax = 100; pk = x + x^2; s = 1 + pk; Do[pk = Normal[Series[pk * x*(1 + x^(2*k - 2))*(1 + x^(2*k - 1))/(1 + x^(k - 1)), {x, 0, nmax}]]; s = s + pk, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Jun 18 2019 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^m*prod(k=0,m-1,1+x^(m+k) +x*O(x^n))),n)}
    for(n=0,80,print1(a(n),", "))
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    m = 80
    x = R.gen().O(m)
    s = sum(x^n*prod(1+x^(n+j) for j in (0..n-1)) for n in (0..m))
    s.coefficients() # G. C. Greubel, Jan 12 2019

Formula

G.f.: Sum_{n>=0} x^(n*(3*n+1)/2) / ( Product_{k=0..n} 1 - x^(n+k+1) ). - Paul D. Hanna, Oct 14 2020
a(n) ~ c * exp(r*sqrt(n)) / sqrt(n), where r = 0.926140105877... = 2*sqrt((3/2)*log(z)^2 - polylog(2, 1-z) + polylog(2, 1-z^2)), where z = (-1 + (44 - 3*sqrt(177))^(1/3) + (44 + 3*sqrt(177))^(1/3))/6 = 0.82948354095849703967... is the real root of the equation z^3*(1 - z)/(1 - z^2)^2 = 1 and c = 0.57862299312... - Vaclav Kotesovec, Jun 29 2019, updated Oct 09 2024