cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207645 Triangle where T(n,k) = Product_{j=1..k} floor(n/j - 1), as read by rows n>=0, columns k=0..[n/2].

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 3, 1, 4, 4, 1, 5, 10, 10, 1, 6, 12, 12, 1, 7, 21, 21, 21, 1, 8, 24, 48, 48, 1, 9, 36, 72, 72, 72, 1, 10, 40, 80, 80, 80, 1, 11, 55, 165, 330, 330, 330, 1, 12, 60, 180, 360, 360, 360, 1, 13, 78, 234, 468, 468, 468, 468, 1, 14, 84, 336, 672, 1344, 1344, 1344
Offset: 0

Views

Author

Paul D. Hanna, Feb 20 2012

Keywords

Comments

Compare the definition to that of Pascal's triangle:
binomial(n,k) = Product_{j=1..k} ((n+1)/j - 1).

Examples

			Triangle begins with row n=0 as:
1;
1;
1,  1;
1,  2;
1,  3,   3;
1,  4,   4;
1,  5,  10,  10;
1,  6,  12,  12;
1,  7,  21,  21,   21;
1,  8,  24,  48,   48;
1,  9,  36,  72,   72,   72;
1, 10,  40,  80,   80,   80;
1, 11,  55, 165,  330,  330,  330;
1, 12,  60, 180,  360,  360,  360;
1, 13,  78, 234,  468,  468,  468,  468;
1, 14,  84, 336,  672, 1344, 1344, 1344;
1, 15, 105, 420, 1260, 2520, 2520, 2520, 2520;
1, 16, 112, 448, 1344, 2688, 2688, 2688, 2688; ...
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Product[Floor[n/j - 1], {j, 1, k}]; Flatten[Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}]] (* Jean-François Alcover, Jun 12 2012 *)
  • PARI
    {T(n,k)=if(k==0,1,prod(j=1,k,floor(n/j-1)))}
    for(n=0,12,for(k=0,n\2,print1(T(n,k),", "));print(""))

Formula

Row sums equal A207643.
Antidiagonal sums form A207644.
Right border of even-indexed rows equals A207646.
Right border of odd-indexed rows equals A207647.