cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A075885 a(n) = 1 + n + n*[n/2] + n*[n/2]*[n/3] + n*[n/2]*[n/3]*[n/4] +... where [x]=floor(x).

Original entry on oeis.org

1, 2, 5, 10, 29, 46, 169, 239, 745, 1450, 4111, 5182, 27157, 33164, 84001, 186496, 610065, 713474, 3061009, 3526553, 13783421, 27380452, 63264389, 71240523, 444872761, 620729126, 1400231613, 2615011102, 9094701085, 10008828958
Offset: 0

Views

Author

Paul D. Hanna, Oct 16 2002

Keywords

Comments

Conjecture: limit a(n)^(1/n) = L where L = 2.200161058099... is the geometric mean of Luroth expansions, where log(L) = Sum_{n>=1} log(n)/(n*(n+1)) = 0.7885305659115... (cf. A085361).
Compare the definition of a(n) to the exponential series:
exp(n) = 1 + n + n*(n/2) + n*(n/2)*(n/3) + n*(n/2)*(n/3)*(n/4) +...

Examples

			a(5) = 1 + 5 + 5[5/2] + 5[5/2][5/3] + 5[5/2][5/3][5/4] + 5[5/2][5/3][5/4][5/5] = 1 + 5 + 5*2 + 5*2*1 + 5*2*1*1 + 5*2*1*1*1 = 46.
		

Crossrefs

Programs

  • PARI
    {a(n)=1+sum(m=1,n,prod(k=1,m,floor(n/k)))}
    for(n=0,60,print1(a(n),", "))
    
  • PARI
    a(n)=my(k=1);1+sum(m=1,n,k*=n\m) \\ Charles R Greathouse IV, Feb 20 2012

Formula

a(n) = 1 + Sum_{m=1..n} Product_{k=1..m} floor(n/k).

A207643 a(n) = 1 + (n-1) + (n-1)*[n/2-1] + (n-1)*[n/2-1]*[n/3-1] + (n-1)*[n/2-1]*[n/3-1]*[n/4-1] +... for n>0 with a(0)=1, where [x] = floor(x).

Original entry on oeis.org

1, 1, 2, 3, 7, 9, 26, 31, 71, 129, 262, 291, 1222, 1333, 2198, 5139, 11881, 12673, 39594, 41923, 117326, 251841, 354292, 371163, 1870453, 2598577, 3456926, 7103955, 16665859, 17283113, 72923314, 75437911, 165990152, 335534913, 422310802, 695765699, 3589651696
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2012

Keywords

Comments

Radius of convergence of g.f. A(x) is near 0.54783..., with A(1/2) = 7.2672875151872...
Compare the definition of a(n) to the trivial binomial sum:
2^(n-1) = 1 + (n-1) + (n-1)*(n/2-1) + (n-1)*(n/2-1)*(n/3-1) + (n-1)*(n/2-1)*(n/3-1)*(n/4-1) +...

Examples

			a(2) = 1 + 1 = 2; a(3) = 1 + 2 = 3;
a(4) = 1 + 3 + 3*[4/2-1] = 7;
a(5) = 1 + 4 + 4*[5/2-1] = 9;
a(6) = 1 + 5 + 5*[6/2-1] + 5*[6/2-1]*[6/3-1] = 26;
a(7) = 1 + 6 + 6*[7/2-1] + 6*[7/2-1]*[7/3-1] = 31;
a(8) = 1 + 7 + 7*[8/2-1] + 7*[8/2-1]*[8/3-1] + 7*[8/2-1]*[8/3-1]*[8/4-1] = 71; ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1 + Sum[ Product[ Floor[(n-j)/j], {j, 1, k}], {k, 1, n/2}]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {a(n)=1+sum(k=1,n,prod(j=1,k,floor(n/j-1)))}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    a(n)=my(t=1);1+sum(k=1,n,t*=n\k-1) \\ Charles R Greathouse IV, Feb 20 2012

Formula

a(n) = 1 + Sum_{k=1..[n/2]} Product_{j=1..k} floor( (n-j) / j ).
Equals row sums of irregular triangle A207645.

A207644 a(n) = 1 + (n-1) + (n-2)*[(n-3)/2] + (n-3)*[(n-4)/2]*[(n-5)/3] + (n-4)*[(n-5)/2]*[(n-6)/3]*[(n-7)/4] +... where [x] = floor(x), with summation extending over the initial [n/2+1] products only.

Original entry on oeis.org

1, 1, 2, 3, 4, 8, 10, 17, 30, 42, 55, 116, 172, 220, 391, 683, 1024, 1616, 2050, 3675, 6520, 9504, 12505, 22421, 35572, 56918, 85701, 138110, 202765, 326231, 503632, 860497, 1376870, 1927446, 2818531, 4892966, 7784671, 11432772, 17287295, 30423457, 46453786, 71810414
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2012

Keywords

Comments

Radius of convergence of g.f. A(x) is near 0.637..., with A(1/phi) = 23.059250143... where phi = (sqrt(5)+1)/2.
Compare the definition of a(n) with the binomial sum:
Fibonacci(n) = 1 + (n-1) + (n-2)*((n-3)/2) + (n-3)*((n-4)/2)*((n-5)/3) + (n-4)*((n-5)/2)*((n-6)/3)*((n-7)/4) +...
with summation extending over the initial [n/2+1] products only.

Examples

			a(3) = 1 + 2 = 3;
a(4) = 1 + 3 + 2*[1/2] = 4;
a(5) = 1 + 4 + 3*[2/2] = 8;
a(6) = 1 + 5 + 4*[3/2] + 3*[2/2]*[1/3] = 10;
a(7) = 1 + 6 + 5*[4/2] + 4*[3/2]*[2/3] = 17;
a(8) = 1 + 7 + 6*[5/2] + 5*[4/2]*[3/3] + 4*[3/2]*[2/3]*[1/4] = 30;
a(9) = 1 + 8 + 7*[6/2] + 6*[5/2]*[4/3] + 5*[4/2]*[3/3]*[2/4] = 42; ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1 + Sum[ Product[ Floor[ (n-k-j+1)/j ], {j, 1, k}], {k, 1, n/2}]; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {a(n)=1+sum(k=1,n\2,prod(j=1,k,floor((n-k-j+1)/j)))}
    for(n=0,60,print1(a(n),", "))

Formula

a(n) = 1 + Sum_{k=1..[n/2]} Product_{j=1..k} floor( (n-k-j+1) / j ).
Equals the antidiagonal sums of triangle A207645.

A207646 Product_{k=1..n} floor(2*n/k - 1).

Original entry on oeis.org

1, 1, 3, 10, 21, 72, 330, 468, 2520, 8160, 20520, 60480, 318780, 504000, 2426112, 10523520, 21092400, 53222400, 452390400, 506373120, 3226728960, 11604902400, 21299241600, 76640256000, 431500608000, 844958822400, 3197988864000, 10492449177600, 38109367296000
Offset: 0

Views

Author

Paul D. Hanna, Feb 20 2012

Keywords

Comments

Forms the right border of even-indexed rows in irregular triangle A207645.

Examples

			Illustration of the initial terms:
a(1) = [2/1-1] = 1;
a(2) = [4/1-1]*[4/2-1] = 3;
a(3) = [6/1-1]*[6/2-1]*[6/3-1] = 10;
a(4) = [8/1-1]*[8/2-1]*[8/3-1]*[8/4-1] = 21;
a(5) = [10/1-1]*[10/2-1]*[10/3-1]*[10/4-1]*[10/5-1] = 72; ...
where [x] = floor(x).
		

Crossrefs

Programs

  • Mathematica
    Table[Product[Floor[(2n)/k-1],{k,n}],{n,0,30}] (* Harvey P. Dale, Aug 27 2017 *)
  • PARI
    {a(n)=prod(k=1,n,floor(2*n/k-1))}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    a(n)=n*=2;prod(k=1,n/3,n\k-1) \\ Charles R Greathouse IV, Feb 20 2012

Formula

a(n) = A207645(2*n, n).

A207647 a(n) = Product_{k=1..n} floor((2*n+1)/k - 1).

Original entry on oeis.org

1, 2, 4, 12, 48, 80, 360, 1344, 2688, 8640, 51840, 63360, 443520, 1198080, 2515968, 10886400, 48384000, 87736320, 465315840, 1134673920, 3309465600, 11887948800, 71530905600, 78343372800, 528817766400, 1839366144000, 3260694528000, 15837659136000, 82169502105600
Offset: 0

Views

Author

Paul D. Hanna, Feb 20 2012

Keywords

Comments

Forms the right border of odd-indexed rows in irregular triangle A207645.

Examples

			Illustration of the initial terms:
a(1) = [3/1-1] = 2;
a(2) = [5/1-1]*[5/2-1] = 4;
a(3) = [7/1-1]*[7/2-1]*[7/3-1] = 12;
a(4) = [9/1-1]*[9/2-1]*[9/3-1]*[9/4-1] = 48;
a(5) = [11/1-1]*[11/2-1]*[11/3-1]*[11/4-1]*[11/5-1] = 80; ...
where [x] = floor(x).
		

Crossrefs

Programs

  • Mathematica
    Table[Product[Floor[(2n+1)/k-1],{k,n}],{n,0,30}] (* Harvey P. Dale, Jun 01 2019 *)
  • PARI
    {a(n)=prod(k=1,n,floor((2*n+1)/k-1))}
    for(n=0,50,print1(a(n),", "))

Formula

a(n) = A207645(2*n+1, n).
Showing 1-5 of 5 results.