A207997 T(n,k) = number of n X k 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).
1, 1, 1, 2, 3, 2, 4, 9, 9, 4, 8, 27, 41, 27, 8, 16, 81, 187, 187, 81, 16, 32, 243, 853, 1302, 853, 243, 32, 64, 729, 3891, 9075, 9075, 3891, 729, 64, 128, 2187, 17749, 63267, 96831, 63267, 17749, 2187, 128, 256, 6561, 80963, 441090, 1034073, 1034073, 441090, 80963
Offset: 1
Examples
Table starts ..1....1.....2.......4.........8.........16...........32............64 ..1....3.....9......27........81........243..........729..........2187 ..2....9....41.....187.......853.......3891........17749.........80963 ..4...27...187....1302......9075......63267.......441090.......3075255 ..8...81...853....9075.....96831....1034073.....11045757.....117997043 .16..243..3891...63267...1034073...16932816....277458045....4547477370 .32..729.17749..441090..11045757..277458045...6978332618..175605187731 .64.2187.80963.3075255.117997043.4547477370.175605187731.6787438272198 ... Some solutions for n=4, k=3: ..0..1..2....0..1..0....0..1..0....0..1..2....0..1..2....0..1..2....0..1..0 ..2..0..1....2..0..2....1..0..2....1..2..1....2..0..1....1..2..1....1..2..1 ..0..2..0....0..1..0....2..1..0....0..1..2....0..2..0....0..1..2....2..0..2 ..1..0..1....1..2..1....1..0..1....1..2..0....2..0..2....2..0..1....1..2..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..544
- R. J. Mathar, Counting 2-way monotonic terrace forms over rectangular landscapes, vixra:1511.0225, eq. (33)-(35).
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Vertex Coloring
- Wikipedia, Graph Coloring
Crossrefs
Formula
2*T(n,m) = A078099(n,m) for m>1. - R. J. Mathar, Nov 23 2015
Comments