A208176 a(n) = F(n+1)^2, if n>=0 is even (F=A000045) and a(n) = (L(2n+2)+8)/5, if n is odd (L=A000204).
1, 3, 4, 11, 25, 66, 169, 443, 1156, 3027, 7921, 20738, 54289, 142131, 372100, 974171, 2550409, 6677058, 17480761, 45765227, 119814916, 313679523, 821223649, 2149991426, 5628750625, 14736260451, 38580030724, 101003831723, 264431464441, 692290561602
Offset: 0
Keywords
References
- Petr Beckman, The History of Pi, Golem Press, 1977, p. 154
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..725
Programs
-
Maple
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <1|-3|0|3>>^n. <<1,3,4,11>>)[1,1]: seq (a(n), n=0..30); # Alois P. Heinz, Feb 24 2012
-
Mathematica
rows={{1},{1,3}}; Table[(x=Flatten[{1, 2MovingAverage[rows[[n]], 2]}]; z=If[EvenQ[n],Fibonacci[n+1]^2, (8+LucasL[(2n+2)])/5]; rows=Append[rows, Append[x,z]]), {n,2,15}]; A208176 = Map[Last[#] &, rows]
Formula
G.f.: -(2*x^3-5*x^2+1)/(x^4-3*x^3+3*x-1). - Alois P. Heinz, Feb 24 2012
a(n) = F(n)^2 + F(n)*F(n+1) + 1. - Gary Detlefs, Apr 18 2012
Comments