A208183 Number of distinct k-colored necklaces with n beads per color; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 6, 16, 4, 1, 1, 1, 24, 318, 188, 10, 1, 1, 1, 120, 11352, 30804, 2896, 26, 1, 1, 1, 720, 623760, 11211216, 3941598, 50452, 80, 1, 1, 1, 5040, 48648960, 7623616080, 15277017432, 586637256, 953056, 246, 1, 1
Offset: 0
Examples
A(1,4) = 6: {0123, 0132, 0213, 0231, 0312, 0321}. A(3,2) = 4: {000111, 001011, 010011, 010101}. A(4,2) = 10: {00001111, 00010111, 00100111, 01000111, 00011011, 00110011, 00101011, 01010011, 01001011, 01010101}. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 2, 6, 24, ... 1, 1, 2, 16, 318, 11352, ... 1, 1, 4, 188, 30804, 11211216, ... 1, 1, 10, 2896, 3941598, 15277017432, ... 1, 1, 26, 50452, 586637256, 24934429725024, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..35, flattened
Crossrefs
Programs
-
Maple
with(numtheory): A:= (n, k)-> `if`(n=0 or k=0, 1, add(phi(n/d) *(k*d)!/(d!^k *k*n), d=divisors(n))): seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Mathematica
A[n_, k_] := If[n == 0 || k == 0, 1, Sum[EulerPhi[n/d]*(k*d)!/(d!^k*k*n), {d, Divisors[n]}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
Formula
A(n,k) = Sum_{d|n} phi(n/d)*(k*d)!/(d!^k*k*n) if n,k>0; A(n,k) = 1 else.
A(n,k) = Sum_{i=1..n} (k*gcd(n,i))!/(gcd(n,i)!^k*k*n) = Sum_{i=1..n} (k*n/gcd(n,i))!/((n/gcd(n,i))!^k*k*n)*phi(gcd(n,i))/phi(n/gcd(n,i)) for n,k >= 1, where phi = A000010. - Richard L. Ollerton, May 19 2021
Comments