cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208215 Number of ways of dividing a 3 X n rectangle into rectangles of integer side lengths.

Original entry on oeis.org

1, 4, 34, 322, 3164, 31484, 314662, 3149674, 31544384, 315981452, 3165414034, 31710994234, 317682195692, 3182564368244, 31883205466534, 319408833724882, 3199866987994304, 32056562443839284, 321145602837871522, 3217266324544621714, 32230871396722195484
Offset: 0

Views

Author

Matthew C. Russell, Apr 23 2012

Keywords

Examples

			For n=1 the a(1) = 4 ways to divide are:
._   _   _   _
|_| |_| | | | |
|_| | | |_| | |
|_| |_| |_| |_|
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, LinearRecurrence[{15, -55, 51}, {4, 34, 322}, 20]] (* Bruno Berselli, Apr 24 2012 *)

Formula

a(n) = 18*a(n-1) -100*a(n-2) +216*a(n-3) -153*a(n-4) with n>4 (see paper in Link lines, p. 1).
G.f.: 1+2*x*(2-13*x+16*x^2) / (1-15*x+55*x^2-51*x^3) = 1+2*x*(2-19*x+55*x^2-48*x^3) / (1-18*x+100*x^2-216*x^3+153*x^4). [Bruno Berselli, Apr 24 2012]
a(n) = 15*a(n-1) -55*a(n-2) +51*a(n-3) with n>3. [Bruno Berselli, Apr 24 2012]

Extensions

More terms from Bruno Berselli, Apr 24 2012
a(0) added by Alois P. Heinz, Dec 10 2012