A208218 a(n)=(a(n-1)^2*a(n-3)+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.
1, 1, 1, 1, 2, 5, 27, 1463, 5350936, 154615586811211, 1295349936263652139582251464117, 6137049788665571444030885529267632764941063995324839557922175605
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..14
- Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
Crossrefs
Cf. A048736.
Programs
-
Magma
[n le 4 select 1 else (Self(n-1)^2*Self(n-3)+Self(n-2))/Self(n-4): n in [1..12]]; // Bruno Berselli, Apr 24 2012
-
Maple
y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)+y(n-2))/y(n-4): end: seq(y(n),n=0..11);
-
Mathematica
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^2*a[n-3]+ a[n-2])/ a[n-4]},a,{n,12}] (* Harvey P. Dale, Dec 25 2016 *)
Comments