cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208227 a(n) = (a(n-1)^2*a(n-3)^4+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 27, 11669, 42551737826, 192450770996317798484507077, 25433732883480327279167427243395261255488704554514737402263583619505
Offset: 0

Views

Author

Matthew C. Russell, Apr 25 2012

Keywords

Comments

This is the case a=4, b=1, c=2, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).

Crossrefs

Programs

  • Maple
    y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)^4+y(n-2))/y(n-4): end:
    seq(y(n),n=0..10);
  • Mathematica
    a[n_]:=If[n<4,1, (a[n - 1]^2*a[n- 3]^4 + a[n - 2])/a[n - 4]]; Table[a[n], {n, 0, 10}] (* Indranil Ghosh, Mar 19 2017 *)