A208227 a(n) = (a(n-1)^2*a(n-3)^4+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.
1, 1, 1, 1, 2, 5, 27, 11669, 42551737826, 192450770996317798484507077, 25433732883480327279167427243395261255488704554514737402263583619505
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..12
- Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
Programs
-
Maple
y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)^4+y(n-2))/y(n-4): end: seq(y(n),n=0..10);
-
Mathematica
a[n_]:=If[n<4,1, (a[n - 1]^2*a[n- 3]^4 + a[n - 2])/a[n - 4]]; Table[a[n], {n, 0, 10}] (* Indranil Ghosh, Mar 19 2017 *)
Comments