A208533 Number of n-bead necklaces of n colors not allowing reversal, with no adjacent beads having the same color.
1, 1, 2, 24, 204, 2635, 39990, 720916, 14913192, 348684381, 9090909090, 261535848376, 8230246567620, 281241174889207, 10371206370593250, 410525522392242720, 17361641481138401520, 781282469565908953017, 37275544492386193492506, 1879498672877604463254424
Offset: 1
Keywords
Examples
All solutions for n=4: ..2....1....1....1....1....1....2....1....1....3....1....1....1....2....1....1 ..3....2....4....4....4....3....4....4....3....4....3....4....2....3....2....2 ..2....4....2....3....2....2....3....1....1....3....4....3....1....4....3....1 ..4....2....4....2....3....3....4....4....3....4....2....4....4....3....2....2 .. ..1....1....2....1....2....1....1....1 ..2....3....3....3....4....2....2....3 ..1....4....2....1....2....4....3....2 ..3....3....3....4....4....3....4....4
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..80
Crossrefs
Diagonal of A208535.
Programs
-
Mathematica
a[1] = 1; a[n_] = (1/n)*DivisorSum[n, EulerPhi[n/#]*((n-1)*(-1)^# + (n-1)^#)& ]; Array[a, 20] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
-
PARI
a(n) = if (n==1, 1, (1/n) * sumdiv(n, d, eulerphi(n/d) * ((n-1)*(-1)^d + (n-1)^d))); \\ Michel Marcus, Nov 01 2017
Formula
a(n) = (1/n) * Sum_{d | n} totient(n/d) * ((n-1)*(-1)^d + (n-1)^d) for n > 1. - Andrew Howroyd, Mar 12 2017
Extensions
a(14)-a(20) from Andrew Howroyd, Mar 12 2017