cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208533 Number of n-bead necklaces of n colors not allowing reversal, with no adjacent beads having the same color.

Original entry on oeis.org

1, 1, 2, 24, 204, 2635, 39990, 720916, 14913192, 348684381, 9090909090, 261535848376, 8230246567620, 281241174889207, 10371206370593250, 410525522392242720, 17361641481138401520, 781282469565908953017, 37275544492386193492506, 1879498672877604463254424
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Examples

			All solutions for n=4:
..2....1....1....1....1....1....2....1....1....3....1....1....1....2....1....1
..3....2....4....4....4....3....4....4....3....4....3....4....2....3....2....2
..2....4....2....3....2....2....3....1....1....3....4....3....1....4....3....1
..4....2....4....2....3....3....4....4....3....4....2....4....4....3....2....2
..
..1....1....2....1....2....1....1....1
..2....3....3....3....4....2....2....3
..1....4....2....1....2....4....3....2
..3....3....3....4....4....3....4....4
		

Crossrefs

Diagonal of A208535.

Programs

  • Mathematica
    a[1] = 1; a[n_] = (1/n)*DivisorSum[n, EulerPhi[n/#]*((n-1)*(-1)^# + (n-1)^#)& ]; Array[a, 20] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
  • PARI
    a(n) = if (n==1, 1, (1/n) * sumdiv(n, d, eulerphi(n/d) * ((n-1)*(-1)^d + (n-1)^d))); \\ Michel Marcus, Nov 01 2017

Formula

a(n) = (1/n) * Sum_{d | n} totient(n/d) * ((n-1)*(-1)^d + (n-1)^d) for n > 1. - Andrew Howroyd, Mar 12 2017

Extensions

a(14)-a(20) from Andrew Howroyd, Mar 12 2017