cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A208850 Expansion of phi(q^2) / phi(-q) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 6, 12, 22, 40, 68, 112, 182, 286, 440, 668, 996, 1464, 2128, 3056, 4342, 6116, 8538, 11820, 16248, 22176, 30068, 40528, 54308, 72378, 95976, 126648, 166352, 217560, 283344, 367552, 474998, 611624, 784812, 1003712, 1279562, 1626216, 2060708, 2603856
Offset: 0

Views

Author

Michael Somos, Mar 02 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 2*q + 6*q^2 + 12*q^3 + 22*q^4 + 40*q^5 + 68*q^6 + 112*q^7 + 182*q^8 + ...
		

Crossrefs

Cf. A208589.

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1-x^(4*k))^5 / ((1-x^k)^2 * (1-x^(2*k)) * (1-x^(8*k))^2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
    a[n_] := SeriesCoefficient[EllipticTheta[3, 0, q^2]/EllipticTheta[3, 0, -q], {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Nov 27 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 / (eta(x + A)^2 * eta(x^2 + A) * eta(x^8 + A)^2), n))}

Formula

Expansion of eta(q^4)^5 / (eta(q)^2 * eta(q^2) * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ 2, 3, 2, -2, 2, 3, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 8^(-1/2) * g(t) where q = exp(2 Pi i t) and g() is g.f. for A208589.
G.f.: (Sum_k x^(2 * k^2)) / (Sum_k (-1)^k * x^k^2).
a(n) ~ exp(sqrt(n)*Pi)/(8*n^(3/4)). - Vaclav Kotesovec, Oct 13 2015

A210063 Expansion of psi(x^4) / phi(x) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 4, -8, 15, -26, 44, -72, 114, -178, 272, -408, 605, -884, 1276, -1824, 2580, -3616, 5028, -6936, 9498, -12922, 17468, -23472, 31369, -41700, 55156, -72616, 95172, -124202, 161436, -209016, 269616, -346562, 443952, -566856, 721530, -915642, 1158608
Offset: 0

Views

Author

Michael Somos, Mar 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 - 2*x + 4*x^2 - 8*x^3 + 15*x^4 - 26*x^5 + 44*x^6 - 72*x^7 + 114*x^8 + ...
q - 2*q^3 + 4*q^5 - 8*q^7 + 15*q^9 - 26*q^11 + 44*q^13 - 72*q^15 + 114*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^(-1/2) * EllipticTheta[2, 0, x^2] / (2*EllipticTheta[3, 0, x]), {x, 0, 50}], x] (* Vaclav Kotesovec, Nov 17 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) * eta(x^8 + A)^2 / eta(x^2 + A)^5, n))}

Formula

Expansion of q^(-1/2) * eta(q)^2 * eta(q^4) * eta(q^8)^2 / eta(q^2)^5 in powers of q.
Euler transform of period 8 sequence [ -2, 3, -2, 2, -2, 3, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 8^(-1/2) * g(t) where q = exp(2 Pi i t) and g() is g.f. for A210030.
a(n) = (-1)^n * A187154(n). Convolution inverse of A208589.
a(n) ~ (-1)^n * exp(sqrt(n)*Pi) / (16*n^(3/4)). - Vaclav Kotesovec, Nov 17 2017
Showing 1-2 of 2 results.