cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A069910 Expansion of Product_{i in A069908} 1/(1 - x^i).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, 16, 18, 23, 26, 33, 37, 46, 52, 63, 72, 87, 98, 117, 133, 157, 178, 209, 236, 276, 312, 361, 408, 471, 530, 609, 686, 784, 881, 1004, 1126, 1279, 1433, 1621, 1814, 2048, 2286, 2574, 2871, 3223, 3590, 4022, 4472, 5000
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2002

Keywords

Comments

Number 39 of the 130 identities listed in Slater 1952.
Number of partitions of 2*n into distinct odd parts. - Vladeta Jovovic, May 08 2003

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 5*x^8 + 5*x^9 + ...
G.f. = q^-1 + q^95 + q^143 + 2*q^191 + 2*q^239 + 3*q^287 + 3*q^335 + ...
		

References

  • M. D. Hirschhorn, The Power of q, Springer, 2017. Chapter 19, Exercises p. 173.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(add(d*[0$2, 1$4, 0$5, 1$4, 0][irem(d, 16)+1],
          d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    max = 56; p = Product[1/(1-x^i), {i, Select[Range[max], MemberQ[{2, 3, 4, 5, 11, 12, 13, 14}, Mod[#, 16]]&]}]; s = Series[p, {x, 0, max}]; a[n_] := Coefficient[s, x, n]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Apr 09 2014 *)
    nmax=60; CoefficientList[Series[Product[(1-x^(8*k-1))*(1-x^(8*k-7))*(1-x^(8*k))*(1-x^(16*k-6))*(1-x^(16*k-10))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 04 2015 *)
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^-{ 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0 }[[ Mod[k, 16] + 1]], {k, n}], {x, 0, n}]; (* Michael Somos, Apr 14 2016 *)
  • PARI
    {a(n) = my(A); if( n<0,0, n=2*n; A = x * O(x^n); polcoeff( eta(-x + A) / eta(x^2 + A), n))}; /* Michael Somos, Apr 11 2004 */
    
  • PARI
    N=66;  q='q+O('q^N);  S=1+sqrtint(N);
    gf=sum(n=0, S, q^(2*n^2) / prod(k=1, 2*n, 1-q^k ) );
    Vec(gf)  \\ Joerg Arndt, Apr 01 2014
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^-[ 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0][k%16 + 1]), n))}; /* Michael Somos, Apr 14 2016 */

Formula

Euler transform of period 16 sequence [0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, ...]. - Michael Somos, Apr 11 2004
G.f.: Sum_{n>=0} q^(2*n^2) / Product_{k=1..2*n} (1 - q^k). - Joerg Arndt, Apr 01 2014
a(n) ~ exp(sqrt(n/3)*Pi) / (2^(5/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 04 2015
Expansion of f(x^3, x^5) / f(-x^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Apr 14 2016
a(n) = A000700(2*n).
a(n) = A027356(4n+1,2n+1). - Alois P. Heinz, Oct 28 2019
From Peter Bala, Feb 08 2021: (Start)
G.f.: A(x) = Product_{n >= 1} (1 + x^(4*n))^2*(1 + x^(4*n-2))*(1 + x^(8*n-3))*(1 + x^(8*n-5)).
The 2 X 2 matrix Product_{k >= 0} [1, x^(2*k+1); x^(2*k+1), 1] = [A(x^2), x*B(x^2); x*B(x)^2, A(x^2)], where B(x) is the g.f. of A069911.
A(x^2) + x*B(x^2) = A^2(-x) + x*B^2(-x) = Product_{k >= 0} 1 + x^(2*k+1), the g.f. of A000700.
A^2(x) + x*B^2(x) is the g.f. of A226622.
(A^2(x) + x*B^2(x))/(A^2(x) - x*B^2(x)) is the g.f. of A208850.
A^4(sqrt(x)) - x*B^4(sqrt(x)) is the g.f. of A029552.
A(x)*B(x) is the g.f. of A226635; A(-x)/B(-x) is the g.f. of A111374; B(-x)/A(-x) is the g.f. of A092869. (End)

A208851 Partitions of 2*n + 1 into parts not congruent to 0, +-4, +-6, +-10, 16 (mod 32).

Original entry on oeis.org

1, 3, 6, 11, 20, 34, 56, 91, 143, 220, 334, 498, 732, 1064, 1528, 2171, 3058, 4269, 5910, 8124, 11088, 15034, 20264, 27154, 36189, 47988, 63324, 83176, 108780, 141672, 183776, 237499, 305812, 392406, 501856, 639781, 813108, 1030354, 1301928, 1640572, 2061850
Offset: 0

Views

Author

Michael Somos, Mar 02 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700)

Examples

			1 + 3*q + 6*q^2 + 11*q^3 + 20*q^4 + 34*q^5 + 56*q^6 + 91*q^7 + 143*q^8 + ...
a(2) = 6 since  2*2 + 1 = 5 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 in 6 ways.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q^2]/EllipticTheta[3, 0, -q] - 1)/(2*q), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 05 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, n = 2*n + 2; A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)) - 1) / 2, n))}

Formula

Expansion of (phi(q^2) / phi(-q) - 1) / (2 * q) in powers of q where phi() is a Ramanujan theta function.
Euler transform of period 16 sequence [ 3, 0, 1, 2, 1, 2, 3, 0, 3, 2, 1, 2, 1, 0, 3, 0, ...].
2 * a(n) = A208850(n + 1). a(n) = A185083(n + 1).

A210030 Expansion of phi(-q) / phi(q^2) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, -2, 4, 6, -8, -12, 16, 22, -30, -40, 52, 68, -88, -112, 144, 182, -228, -286, 356, 440, -544, -668, 816, 996, -1210, -1464, 1768, 2128, -2552, -3056, 3648, 4342, -5160, -6116, 7232, 8538, -10056, -11820, 13872, 16248, -18996, -22176, 25844, 30068
Offset: 0

Views

Author

Michael Somos, Mar 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 - 2*q - 2*q^2 + 4*q^3 + 6*q^4 - 8*q^5 - 12*q^6 + 16*q^7 + 22*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, -q]/EllipticTheta[3, 0, q^2], {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 17 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) * eta(x^8 + A)^2 / eta(x^4 + A)^5, n))}

Formula

Expansion of eta(q)^2 * eta(q^2) * eta(q^8)^2 / eta(q^4)^5 in powers of q.
Euler transform of period 8 sequence [ -2, -3, -2, 2, -2, -3, -2, 0, ...].
G.f.: (Sum_k (-1)^k * x^k^2) / (Sum_k x^(2 * k^2)).
a(n) = (-1)^n * A080015(n) = (-1)^[(n + 1) / 4] * A080054(n).
Convolution inverse of A208850.

A185083 Partitions of 2*n into parts not congruent to 0, +-2, +-12, +-14, 16 (mod 32).

Original entry on oeis.org

1, 1, 3, 6, 11, 20, 34, 56, 91, 143, 220, 334, 498, 732, 1064, 1528, 2171, 3058, 4269, 5910, 8124, 11088, 15034, 20264, 27154, 36189, 47988, 63324, 83176, 108780, 141672, 183776, 237499, 305812, 392406, 501856, 639781, 813108, 1030354, 1301928, 1640572
Offset: 0

Views

Author

Michael Somos, Mar 02 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + x + 3*x^2 + 6*x^3 + 11*x^4 + 20*x^5 + 34*x^6 + 56*x^7 + 91*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; A185083[n_] := SeriesCoefficient[(1/2)*(f[x^2, x^2]/f[-x, -x] + 1), {x, 0, n}]; Table[A185083[n], {n,0,50}] (* G. C. Greubel, Jun 22 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, n = 2*n; A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)) + 1) / 2, n))}

Formula

Expansion of (phi(q^2) / phi(-q) + 1) / 2 in powers of q where phi() is a Ramanujan theta function.
Euler transform of period 16 sequence [ 1, 2, 3, 2, 3, 0, 1, 0, 1, 0, 3, 2, 3, 2, 1, 0, ...].
2 * a(n) = A208850(n) unless n = 0. a(n + 1) = A208851(n). a(n) = A115671(2*n).

A208589 Expansion of phi(x) / psi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 0, 1, -2, 0, 0, -1, 4, 0, 0, 0, -6, 0, 0, 1, 8, 0, 0, 0, -12, 0, 0, -1, 18, 0, 0, -1, -24, 0, 0, 2, 32, 0, 0, 1, -44, 0, 0, -2, 58, 0, 0, -1, -76, 0, 0, 2, 100, 0, 0, 1, -128, 0, 0, -3, 164, 0, 0, -1, -210, 0, 0, 4, 264, 0, 0, 2, -332, 0, 0, -5, 416
Offset: 0

Views

Author

Michael Somos, Feb 29 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^4 - 2*x^5 - x^8 + 4*x^9 - 6*x^13 + x^16 + 8*x^17 - 12*x^21 + ...
G.f. = 1/q + 2*q + q^7 - 2*q^9 - q^15 + 4*q^17 - 6*q^25 + q^31 + 8*q^33 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2 q^(1/2) EllipticTheta[ 3, 0, q] / EllipticTheta[ 2, 0, q^2], {q, 0, n}]; (* Michael Somos, Jul 05 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A) * eta(x^8 + A)^2), n))};

Formula

Expansion of q^(1/2) * eta(q^2)^5 / (eta(q)^2 * eta(q^4) * eta(q^8)^2) in powers of q.
Given g.f. A(x), then B(q) = (A(q^2) / q)^2 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v^2 - (v - 4) * (u - 4)^2.
Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u^3 - v) * (v^3 + u) - 3*u*v * (2*(u^2 + v^2) - 11). - Michael Somos, Jul 05 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 8^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A208850. - Michael Somos, Jul 05 2014
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A029838(n). a(4*n + 1) = 2 * A083365(n).
Convolution square is A131125. Convolution inverse is A210063. - Michael Somos, Jul 05 2014

A210065 Expansion of phi(q^2) / phi(q) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 6, -12, 22, -40, 68, -112, 182, -286, 440, -668, 996, -1464, 2128, -3056, 4342, -6116, 8538, -11820, 16248, -22176, 30068, -40528, 54308, -72378, 95976, -126648, 166352, -217560, 283344, -367552, 474998, -611624, 784812, -1003712, 1279562, -1626216
Offset: 0

Views

Author

Michael Somos, Mar 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q + 6*q^2 - 12*q^3 + 22*q^4 - 40*q^5 + 68*q^6 - 112*q^7 + 182*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1 - x^k) / (1 - x^(8*k)))^2 * (1 + x^(2*k))^7, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 17 2017 *)
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(eta[q]/ eta[q^8])^2*(eta[q^4]/eta[q^2])^7, {q, 0, 50}], q] (* G. C. Greubel, Aug 11 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^8 + A))^2 * (eta(x^4 + A) / eta(x^2 + A))^7, n))};

Formula

Expansion of (eta(q) / eta(q^8))^2 * (eta(q^4) / eta(q^2))^7 in powers of q.
Euler transform of period 8 sequence [-2, 5, -2, -2, -2, 5, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2^(-1/2) * g(t) where q = exp(2 Pi i t) and g() is g.f. for A080015.
a(n) = (-1)^n * A208850(n). Convolution inverse of A080015.
a(n) ~ (-1)^n * exp(sqrt(n)*Pi) / (8*n^(3/4)). - Vaclav Kotesovec, Nov 17 2017
Showing 1-6 of 6 results.