cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A220062 Number A(n,k) of n length words over k-ary alphabet, where neighboring letters are neighbors in the alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 4, 2, 0, 0, 1, 5, 6, 6, 2, 0, 0, 1, 6, 8, 10, 8, 2, 0, 0, 1, 7, 10, 14, 16, 12, 2, 0, 0, 1, 8, 12, 18, 24, 26, 16, 2, 0, 0, 1, 9, 14, 22, 32, 42, 42, 24, 2, 0, 0, 1, 10, 16, 26, 40, 58, 72, 68, 32, 2, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Dec 03 2012

Keywords

Comments

Equivalently, the number of walks of length n-1 on the path graph P_k. - Andrew Howroyd, Apr 17 2017

Examples

			A(5,3) = 12: there are 12 words of length 5 over 3-ary alphabet {a,b,c}, where neighboring letters are neighbors in the alphabet: ababa, ababc, abcba, abcbc, babab, babcb, bcbab, bcbcb, cbaba, cbabc, cbcba, cbcbc.
Square array A(n,k) begins:
  1,  1,  1,  1,  1,   1,   1,   1, ...
  0,  1,  2,  3,  4,   5,   6,   7, ...
  0,  0,  2,  4,  6,   8,  10,  12, ...
  0,  0,  2,  6, 10,  14,  18,  22, ...
  0,  0,  2,  8, 16,  24,  32,  40, ...
  0,  0,  2, 12, 26,  42,  58,  74, ...
  0,  0,  2, 16, 42,  72, 104, 136, ...
  0,  0,  2, 24, 68, 126, 188, 252, ...
		

Crossrefs

Columns k=0, 2-10 give: A000007, A040000, A029744(n+2) for n>0, A006355(n+3) for n>0, A090993(n+1) for n>0, A090995(n-1) for n>2, A129639, A153340, A153362, A153360.
Rows 0-6 give: A000012, A001477, A005843(k-1) for k>0, A016825(k-2) for k>1, A008590(k-2) for k>2, A113770(k-2) for k>3, A063164(k-2) for k>4.
Main diagonal gives: A102699.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i=0, add(b(n-1, j, k), j=1..k),
          `if`(i>1, b(n-1, i-1, k), 0)+
          `if`(i b(n, 0, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, Sum[b[n-1, j, k], {j, 1, k}], If[i>1, b[n-1, i-1, k], 0] + If[iJean-François Alcover, Jan 19 2015, after Alois P. Heinz *)
  • PARI
    TransferGf(m,u,t,v,z)=vector(m,i,u(i))*matsolve(matid(m)-z*matrix(m,m,i,j,t(i,j)),vectorv(m,i,v(i)));
    ColGf(m,z)=1+z*TransferGf(m, i->1, (i,j)->abs(i-j)==1, j->1, z);
    a(n,k)=Vec(ColGf(k,x) + O(x^(n+1)))[n+1];
    for(n=0, 7, for(k=0, 7, print1( a(n,k), ", ") ); print(); );
    \\ Andrew Howroyd, Apr 17 2017

A208666 Number of 2n-bead necklaces labeled with numbers 1..n allowing reversal, with neighbors differing by exactly 1.

Original entry on oeis.org

0, 1, 4, 14, 44, 152, 514, 1866, 6884, 26137, 100442, 390592, 1526272, 5989223, 23548688, 92727898, 365445200, 1441195226, 5686268314, 22444465311, 88622259788, 350040069245, 1383007946774, 5465854718664, 21607909105528, 85444555330132, 337962745845558, 1337094537703089
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2012

Keywords

Examples

			All solutions for n=3:
..1....1....1....2
..2....2....2....3
..1....3....1....2
..2....2....2....3
..3....3....1....2
..2....2....2....3
		

Crossrefs

Diagonal of A208671.

Formula

a(n) = (2*A208722(n) + A220062(n+1,n))/4. - Andrew Howroyd, Mar 19 2017

Extensions

a(11)-a(28) from Andrew Howroyd, Mar 19 2017

A208667 Number of 2n-bead necklaces labeled with numbers 1..4 allowing reversal, with neighbors differing by exactly 1.

Original entry on oeis.org

3, 5, 8, 14, 24, 47, 89, 187, 396, 881, 1990, 4645, 10935, 26211, 63320, 154378, 378444, 933023, 2308957, 5735372, 14286908, 35683815, 89324138, 224057919, 563033979, 1417210457, 3572641304, 9018885122, 22796905056, 57692673963, 146167385345, 370710166435
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2012

Keywords

Examples

			All solutions for n=4:
..1....2....2....2....1....1....1....1....1....3....1....1....2....2
..2....3....3....3....2....2....2....2....2....4....2....2....3....3
..1....2....2....2....1....1....3....3....3....3....3....1....4....4
..2....3....3....3....2....2....4....2....2....4....2....2....3....3
..1....4....2....2....3....1....3....1....3....3....3....3....2....4
..2....3....3....3....4....2....4....2....4....4....2....2....3....3
..1....4....2....4....3....3....3....3....3....3....3....3....4....4
..2....3....3....3....2....2....2....2....2....4....2....2....3....3
		

Crossrefs

Column 4 of A208671.

Formula

a(n) = (2*A208723(n) + A090991(n))/4. - Andrew Howroyd, Mar 19 2017

Extensions

a(25)-a(32) from Andrew Howroyd, Mar 19 2017

A208668 Number of 2n-bead necklaces labeled with numbers 1..5 allowing reversal, with neighbors differing by exactly 1.

Original entry on oeis.org

4, 7, 12, 23, 44, 97, 212, 512, 1260, 3251, 8540, 23035, 62780, 173453, 482692, 1353077, 3811364, 10785235, 30625196, 87239999, 249174236, 713416601, 2046945140, 5884580074, 16946835092, 48883925867, 141217957620, 408519816611, 1183291934300, 3431535849813
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2012

Keywords

Examples

			All solutions for n=3:
..3....3....1....1....1....2....2....3....1....2....2....4
..4....4....2....2....2....3....3....4....2....3....3....5
..5....3....1....1....3....2....4....3....3....2....4....4
..4....4....2....2....2....3....5....4....4....3....3....5
..5....5....3....1....3....2....4....3....3....4....4....4
..4....4....2....2....2....3....3....4....2....3....3....5
		

Crossrefs

Column 5 of A208671.

Formula

a(n) = (2*A208724(n) + A090993(n))/4. - Andrew Howroyd, Mar 19 2017

Extensions

a(13)-a(30) from Andrew Howroyd, Mar 19 2017

A208669 Number of 2n-bead necklaces labeled with numbers 1..6 allowing reversal, with neighbors differing by exactly 1.

Original entry on oeis.org

5, 9, 16, 32, 65, 152, 360, 937, 2512, 7034, 20124, 58899, 174408, 522453, 1576468, 4787425, 14607763, 44758541, 137607258, 424343533, 1311982883, 4065937220, 12627227963, 39290663343, 122470374536, 382359843141, 1195524220166, 3743191124783
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2012

Keywords

Examples

			All solutions for n=3:
..3....5....2....3....3....2....4....4....2....1....1....2....1....3....4....1
..4....6....3....4....4....3....5....5....3....2....2....3....2....4....5....2
..5....5....2....3....3....4....4....4....4....1....3....2....3....5....6....1
..6....6....3....4....4....3....5....5....5....2....4....3....2....4....5....2
..5....5....4....5....3....4....6....4....4....1....3....2....3....5....6....3
..4....6....3....4....4....3....5....5....3....2....2....3....2....4....5....2
		

Crossrefs

Column 6 of A208671.

Formula

a(n) = (2*A208725(n) + A090995(n))/4.

Extensions

a(16)-a(28) from Andrew Howroyd, Mar 19 2017

A208670 Number of 2n-bead necklaces labeled with numbers 1..7 allowing reversal, with neighbors differing by exactly 1.

Original entry on oeis.org

6, 11, 20, 41, 86, 208, 514, 1398, 3934, 11576, 34850, 107303, 334396, 1053851, 3345320, 10685570, 34292064, 110498897, 357256018, 1158492478, 3766458404, 12274037845, 40082339406, 131144365904, 429838330172, 1411104048106, 4639351259122, 15273992343065
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2012

Keywords

Examples

			All solutions for n=3:
..1....5....1....5....3....4....1....6....4....1....2....2....4....5....3....4
..2....6....2....6....4....5....2....7....5....2....3....3....5....6....4....5
..1....5....3....7....3....4....1....6....6....3....4....2....6....5....5....4
..2....6....2....6....4....5....2....7....5....4....3....3....7....6....4....5
..3....5....3....7....5....6....1....6....6....3....4....2....6....7....5....4
..2....6....2....6....4....5....2....7....5....2....3....3....5....6....4....5
..
..2....2....3....3
..3....3....4....4
..2....4....3....5
..3....5....4....6
..4....4....3....5
..3....3....4....4
		

Crossrefs

Column 7 of A208671.

Formula

a(n) = (2*A208726(n) + A129639(11+n))/4.

Extensions

a(12)-a(28) from Andrew Howroyd, Mar 19 2017
Showing 1-6 of 6 results.