cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A208673 Number of words A(n,k), either empty or beginning with the first letter of the k-ary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 10, 1, 1, 1, 1, 9, 37, 35, 1, 1, 1, 1, 15, 163, 309, 126, 1, 1, 1, 1, 25, 640, 3593, 2751, 462, 1, 1, 1, 1, 41, 2503, 36095, 87501, 25493, 1716, 1, 1, 1, 1, 67, 9559, 362617, 2336376, 2266155, 242845, 6435, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 29 2012

Keywords

Comments

Also the number of (n*k-1)-step walks on k-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that the absolute difference of the dimension indices used in consecutive steps is <= 1.
All rows are linear recurrences with constant coefficients and for n > 0 the order of the recurrence is bounded by 2*n-1. For n up to at least 20 this upper bound is exact. - Andrew Howroyd, Feb 22 2022

Examples

			A(0,0) = A(n,0) = A(0,k) = 1: the empty word.
A(2,3) = 5:
  +------+   +------+   +------+   +------+   +------+
  |aabbcc|   |aabcbc|   |aabccb|   |ababcc|   |abccba|
  +------+   +------+   +------+   +------+   +------+
  |122222|   |122222|   |122222|   |112222|   |111112|
  |001222|   |001122|   |001112|   |011222|   |011122|
  |000012|   |000112|   |000122|   |000012|   |001222|
  +------+   +------+   +------+   +------+   +------+
  |xx    |   |xx    |   |xx    |   |x x   |   |x    x|
  |  xx  |   |  x x |   |  x  x|   | x x  |   | x  x |
  |    xx|   |   x x|   |   xx |   |    xx|   |  xx  |
  +------+   +------+   +------+   +------+   +------+
Square array A(n,k) begins:
  1,  1,    1,     1,       1,         1,           1, ..
  1,  1,    1,     1,       1,         1,           1, ..
  1,  1,    3,     5,       9,        15,          25, ..
  1,  1,   10,    37,     163,       640,        2503, ..
  1,  1,   35,   309,    3593,     36095,      362617, ..
  1,  1,  126,  2751,   87501,   2336376,    62748001, ..
  1,  1,  462, 25493, 2266155, 164478048, 12085125703, ..
		

Crossrefs

Columns k=0+1, 2-4 give: A000012, A088218, A208675, A212334.
Rows n=0+1, 2-3 give: A000012, A001595, A208674.
Main diagonal gives A351759.
Cf. A208879 (cyclic alphabet), A331562.

Programs

  • Maple
    b:= proc(t, l) option remember; local n; n:= nops(l);
         `if`(n<2 or {0}={l[]}, 1,
         `if`(l[t]>0, b(t, [seq(l[i]-`if`(i=t, 1, 0), i=1..n)]), 0)+
         `if`(t0,
                      b(t+1, [seq(l[i]-`if`(i=t+1, 1, 0), i=1..n)]), 0)+
         `if`(t>1 and l[t-1]>0,
                      b(t-1, [seq(l[i]-`if`(i=t-1, 1, 0), i=1..n)]), 0))
        end:
    A:= (n, k)-> `if`(n=0 or k=0, 1, b(1, [n-1, n$(k-1)])):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[t_, l_List] := b[t, l] = Module[{n = Length[l]}, If[n < 2 || {0} == Union[l], 1, If[l[[t]] > 0, b[t, Table[l[[i]] - If[i == t, 1, 0], {i, 1, n}]], 0] + If[t < n && l[[t + 1]] > 0, b[t + 1, Table[l[[i]] - If[i == t + 1, 1, 0], {i, 1, n}]], 0] + If[t > 1 && l[[t - 1]] > 0, b[t - 1, Table[l[[i]] - If[i == t - 1, 1, 0], {i, 1, n}]], 0]]]; A[n_, k_] := If[n == 0 || k == 0, 1, b[1, Join[{n - 1}, Array[n&, k - 1]]]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
  • PARI
    F(u)={my(n=#u); sum(k=1, n,u[k]*binomial(n-1,k-1))}
    step(u, c)={my(n=#u); vector(n, k, sum(i=max(0, 2*k-c-n), k-1, sum(j=0, n-2*k+i+c, u[k-i+j]*binomial(n-1, 2*k-1-c-i+j)*binomial(k-1, k-i-1)*binomial(k-i+j-c, j) ))) }
    R(n,k)={my(r=vector(n+1), u=vector(k), v=vector(k)); u[1]=v[1]=r[1]=r[2]=1; for(n=3, #r, u=step(u,1); v=step(v,0)+u; r[n]=F(v)); r}
    T(n,k)={if(n==0||k==0, 1, R(k,n)[1+k])} \\ Andrew Howroyd, Feb 22 2022
Showing 1-1 of 1 results.