A208728 Composite numbers n such that b^(n+1) == 1 (mod n) for every b coprime to n.
15, 35, 255, 455, 1295, 2703, 4355, 6479, 9215, 10439, 11951, 16211, 23435, 27839, 44099, 47519, 47879, 62567, 63167, 65535, 93023, 94535, 104195, 120959, 131327, 133055, 141155, 142883, 157079, 170819, 196811, 207935, 260831, 283679, 430199, 560735, 576719
Offset: 1
Keywords
Examples
6479 is part of the sequence because its prime factors are 11, 19 and 31: (6479+1)/(11-1)=648, (6479+1)/(19-1)=360 and (6479+1)/(31-1)=216.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Carmichael Number
- Eric Weisstein's World of Mathematics, Korselt's Criterion
- Eric Weisstein's World of Mathematics, Knödel Numbers
Programs
-
Maple
with(numtheory); P:=proc(n) local d, ok, p; if issqrfree(n) then p:=factorset(n); ok:=1; for d from 1 to nops(p) do if frac((n+1)/(p[d]-1))>0 then ok:=0; break; fi; od; if ok=1 then n; fi; fi; end: seq(P(i),i=5..576719);
-
Mathematica
Select[Range[2, 576719], SquareFreeQ[#] && ! PrimeQ[#] && Union[Mod[# + 1, Transpose[FactorInteger[#]][[1]] - 1]] == {0} &] (* T. D. Noe, Mar 05 2012 *)
-
PARI
is(n)=if(isprime(n)||!issquarefree(n)||n<3, return(0)); my(f=factor(n)[, 1]); for(i=1, #f, if((n+1)%(f[i]-1), return(0))); 1 \\ Charles R Greathouse IV, Mar 05 2012
Extensions
Definition corrected by Thomas Ordowski, Jun 25 2017
Comments