A208741 Triangular array read by rows. T(n,k) is the number of sets of exactly k distinct binary words with a total of n letters.
2, 4, 1, 8, 8, 16, 22, 4, 32, 64, 20, 64, 156, 84, 6, 128, 384, 264, 40, 256, 888, 784, 189, 4, 512, 2048, 2152, 704, 50, 1024, 4592, 5664, 2384, 272, 1, 2048, 10240, 14368, 7328, 1232, 32, 4096, 22496, 35568, 21382, 4704, 248
Offset: 1
Examples
T(3,2) = 8 because we have: {a,aa}, {a,ab}, {a,ba}, {a,bb}, {b,aa}, {b,ab}, {b,ba}, {b,bb}; 2 word languages with total length 3. Triangle T(n,k) begins: 2; 4, 1; 8, 8; 16, 22, 4; 32, 64, 20; 64, 156, 84, 6; ...
Links
- Alois P. Heinz, Rows n = 0..300, flattened
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 64
Programs
-
Maple
h:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(h(n-i*j, i-1)*binomial(2^i, j)*x^j, j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(h(n$2)): seq(T(n), n=1..15); # Alois P. Heinz, Sep 24 2017
-
Mathematica
nn=12; p=Product[(1+y x^i)^(2^i), {i,1,nn}]; f[list_] := Select[list, #>0&]; Map[f, Drop[CoefficientList[Series[p[x,y], {x,0,nn}], {x,y}], 1]]//Flatten
Formula
O.g.f.: Product_{i>=1} (1 + y*x^i)^(2^i).
Comments