cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208904 Triangle of coefficients of polynomials v(n,x) jointly generated with A208660; see the Formula section.

Original entry on oeis.org

1, 3, 1, 5, 6, 1, 7, 19, 9, 1, 9, 44, 42, 12, 1, 11, 85, 138, 74, 15, 1, 13, 146, 363, 316, 115, 18, 1, 15, 231, 819, 1059, 605, 165, 21, 1, 17, 344, 1652, 2984, 2470, 1032, 224, 24, 1, 19, 489, 3060, 7380, 8378, 4974, 1624, 292, 27, 1, 21, 670, 5301, 16488
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
Riordan array ((1+x)/(1-x)^2, x(1+x)/(1-x)^2) (follows from Kruchinin formula). - Ralf Stephan, Jan 02 2014
From Peter Bala, Jul 21 2014: (Start)
Let M denote the lower unit triangular array A099375 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section. (End)

Examples

			First five rows:
1
3...1
5...6....1
7...19...9....1
9...44...42...12...1
First five polynomials v(n,x):
1
3 + x
5 + 6x + x^2
7 + 19x + 9x^2 + x^3
9 + 44x + 42x^2 + 12x^3 + x^4
From _Peter Bala_, Jul 21 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
/1        \/1        \/1        \      /1            \
|3 1      ||0 1      ||0 1      |      |3  1         |
|5 3 1    ||0 3 1    ||0 0 1    |... = |5  6  1      |
|7 5 3 1  ||0 5 3 1  ||0 0 3 1  |      |7 19  9  1   |
|9 7 5 3 1||0 7 5 3 1||0 0 5 3 1|      |9 44 42 12 1 |
|...      ||...      ||...      |      |...
(End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208660 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208904 *)

Formula

u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
From Vladimir Kruchinin, Mar 11 2013: (Start)
T(n,k) = sum(i=0..n, binomial(i+k-1,2*k-1)*binomial(k,n-i))
((x+x^2)/(1-x)^2)^k = sum(n>=k, T(n,k)*x^n).
T(n,2)=A005900(n).
T(2*n-1,n) / n = A003169(n).
T(2*n,n) = A156894(n), n>1.
sum(k=1..n, T(n,k)) = A003946(n).
sum(k=1..n, T(n,k)*(-1)^(n+k)) = A078050(n).
n*sum(k=1..n, T(n,k)/k) = A058481(n). (End)
Recurrence: T(n+1,k+1) = sum {i = 0..n-k} (2*i + 1)*T(n-i,k). - Peter Bala, Jul 21 2014