A208904 Triangle of coefficients of polynomials v(n,x) jointly generated with A208660; see the Formula section.
1, 3, 1, 5, 6, 1, 7, 19, 9, 1, 9, 44, 42, 12, 1, 11, 85, 138, 74, 15, 1, 13, 146, 363, 316, 115, 18, 1, 15, 231, 819, 1059, 605, 165, 21, 1, 17, 344, 1652, 2984, 2470, 1032, 224, 24, 1, 19, 489, 3060, 7380, 8378, 4974, 1624, 292, 27, 1, 21, 670, 5301, 16488
Offset: 1
Examples
First five rows: 1 3...1 5...6....1 7...19...9....1 9...44...42...12...1 First five polynomials v(n,x): 1 3 + x 5 + 6x + x^2 7 + 19x + 9x^2 + x^3 9 + 44x + 42x^2 + 12x^3 + x^4 From _Peter Bala_, Jul 21 2014: (Start) With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins /1 \/1 \/1 \ /1 \ |3 1 ||0 1 ||0 1 | |3 1 | |5 3 1 ||0 3 1 ||0 0 1 |... = |5 6 1 | |7 5 3 1 ||0 5 3 1 ||0 0 3 1 | |7 19 9 1 | |9 7 5 3 1||0 7 5 3 1||0 0 5 3 1| |9 44 42 12 1 | |... ||... ||... | |... (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208660 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208904 *)
Formula
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
From Vladimir Kruchinin, Mar 11 2013: (Start)
T(n,k) = sum(i=0..n, binomial(i+k-1,2*k-1)*binomial(k,n-i))
((x+x^2)/(1-x)^2)^k = sum(n>=k, T(n,k)*x^n).
T(n,2)=A005900(n).
T(2*n-1,n) / n = A003169(n).
T(2*n,n) = A156894(n), n>1.
sum(k=1..n, T(n,k)) = A003946(n).
sum(k=1..n, T(n,k)*(-1)^(n+k)) = A078050(n).
n*sum(k=1..n, T(n,k)/k) = A058481(n). (End)
Recurrence: T(n+1,k+1) = sum {i = 0..n-k} (2*i + 1)*T(n-i,k). - Peter Bala, Jul 21 2014
Comments