A209245 Main diagonal of the triple recurrence x(i,j,k) = x(i-1,j,k) + x(i,j-1,k) + x(i,j,k-1) with x(i,j,k) = 1 if 0 in {i,j,k}.
1, 3, 33, 543, 10497, 220503, 4870401, 111243135, 2602452993, 61985744967, 1497148260033, 36566829737727, 901314269530113, 22385640256615743, 559574590912019457, 14065064484334380543, 355222860485671141377, 9008982166319523972903, 229325469394627488082497
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Crossrefs
Column k=3 of A210472. - Alois P. Heinz, Jan 23 2013
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 2*n+1, ((888-3020*n+3668*n^2-1912*n^3+364*n^4) *a(n-1) +3*(3*n-4)*(7*n-5)*(2*n-3)*(3*n-5) *a(n-2)) / ((2*n-1)*(7*n-12)*(n-1)^2)) end: seq(a(n), n=0..20); # Alois P. Heinz, Jan 17 2013
-
Mathematica
b[] = 0; b[args__] := b[args] = If[{args}[[1]] == 0, 1, Sum[b @@ Sort[ ReplacePart[{args}, i -> {args}[[i]] - 1]], {i, 1, Length[{args}]}]]; a[n_] := b @@ Table[n, 3]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 03 2018, from Alois P. Heinz's Maple code for A210472 *)
Formula
a(n) = x(n,n,n) with x(i,j,k) = 1 if 0 in {i,j,k} and x(i,j,k) = x(i-1,j,k) + x(i,j-1,k) + x(i,j,k-1) else.
a(n) ~ 3^(3*n+1/2) / (8*Pi*n). - Vaclav Kotesovec, Sep 07 2014
Comments