cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209274 Table T(n,k) = n*(n+2^k-1)/2, n, k > 0 read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 9, 10, 16, 17, 15, 14, 15, 32, 33, 27, 22, 20, 21, 64, 65, 51, 38, 30, 27, 28, 128, 129, 99, 70, 50, 39, 35, 36, 256, 257, 195, 134, 90, 63, 49, 44, 45, 512, 513, 387, 262, 170, 111, 77, 60, 54, 55, 1024, 1025, 771, 518, 330, 207, 133, 92, 72, 65, 66
Offset: 1

Views

Author

Boris Putievskiy, Jan 15 2013

Keywords

Comments

Column number 1 A000217 n*(n+1)/2,
column number 2 A000096 n*(n+3)/2,
column number 3 A055999 n*(n+7)/2,
column number 4 A056121 n*(n+15)/2,
column number 5 A132758 n*(n+31)/2.
Row number 1 A000079 2^k,
row number 2 A000051 2^k + 1.

Examples

			The start of the sequence as table:
  1....2...4...8...16...32...64...
  3....5...9..17...33...65..129...
  6....9..15..27...51...99..195...
  10..14..22..38...70..134..262...
  15..20..30..50...90..170..330...
  21..27..39..63..111..207..399...
  28..35..49..77..133..245..469...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  2,3;
  4,5,6;
  8,9,9,10;
  16,17,15,14,15;
  32,33,27,22,20,21;
  64,65,51,38,30,27,28;
  . . .
Row number r contains r numbers.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := n - d[n]*(d[n] + 1)/2; c[n_] := (d[n]^2 + 3*d[n] + 4)/2 - n; d[n_] := Floor[(-1 + Sqrt[8*n - 7])/2]; a[n_] := b[n]*(b[n] + 2^c[n] - 1)/2; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Jan 04 2018 *)
  • PARI
    a(n, k) = n*(n+2^k-1)/2
    array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print(""))
    /* Print initial 7 rows and 8 columns of table as follows */
    array(7, 8) \\ Felix Fröhlich, Jan 05 2018
  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result = i*(i+2**j-1)/2
    

Formula

a(n) = A002260(n)*(A002260(n)+2^A004736(n)-1)/2.
a(n) = i*(i+2^j-1)/2,
where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).