A209294 a(n) = (7*n^2 - 7*n + 4)/2.
2, 9, 23, 44, 72, 107, 149, 198, 254, 317, 387, 464, 548, 639, 737, 842, 954, 1073, 1199, 1332, 1472, 1619, 1773, 1934, 2102, 2277, 2459, 2648, 2844, 3047, 3257, 3474, 3698, 3929, 4167, 4412, 4664, 4923, 5189, 5462
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[(7*n^2 - 7*n + 4)/2: n in [1..30]]; // G. C. Greubel, Jan 04 2018
-
Mathematica
Table[(7*n^2 - 7*n + 4)/2, {n, 1, 50}] (* G. C. Greubel, Jan 04 2018 *) LinearRecurrence[{3,-3,1},{2,9,23},40] (* Harvey P. Dale, Nov 02 2020 *)
-
PARI
a(n)=7*n*(n-1)/2+2 \\ Charles R Greathouse IV, Jan 17 2013
Formula
a(n) = (7*n^2 - 7*n + 4) = 7*T(n) + 2 with T = A000217.
G.f.: x*(2+3*x+2*x^2)/(1-x)^3. - Bruno Berselli, Jan 18 2013
a(n) = a(-n+1) = 3*a(n-1)-3*a(n-2)+a(n-3). - Bruno Berselli, Jan 18 2013
a(n) = 1 + A069099(n). - Omar E. Pol, Apr 27 2017
E.g.f.: ((7*x^2 + 4)*exp(x) - 4)/2. - G. C. Greubel, Jan 04 2018
Comments