A209297 Triangle read by rows: T(n,k) = k*n + k - n, 1 <= k <= n.
1, 1, 4, 1, 5, 9, 1, 6, 11, 16, 1, 7, 13, 19, 25, 1, 8, 15, 22, 29, 36, 1, 9, 17, 25, 33, 41, 49, 1, 10, 19, 28, 37, 46, 55, 64, 1, 11, 21, 31, 41, 51, 61, 71, 81, 1, 12, 23, 34, 45, 56, 67, 78, 89, 100, 1, 13, 25, 37, 49, 61, 73, 85, 97, 109, 121, 1, 14, 27
Offset: 1
Examples
From _Muniru A Asiru_, Oct 31 2017: (Start) Triangle begins: 1; 1, 4; 1, 5, 9; 1, 6, 11, 16; 1, 7, 13, 19, 25; 1, 8, 15, 22, 29, 36; 1, 9, 17, 25, 33, 41, 49; 1, 10, 19, 28, 37, 46, 55, 64; 1, 11, 21, 31, 41, 51, 61, 71, 81; 1, 12, 23, 34, 45, 56, 67, 78, 89, 100; ... (End)
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
Crossrefs
Programs
-
GAP
Flat(List([1..10^3], n -> List([1..n], k -> k * n + k - n))); # Muniru A Asiru, Oct 31 2017
-
Haskell
a209297 n k = k * n + k - n a209297_row n = map (a209297 n) [1..n] a209297_tabl = map a209297_row [1..]
-
Mathematica
Array[Range[1, #^2, #+1]&,10] (* Paolo Xausa, Feb 08 2024 *)
Formula
T(n,k) = (k-1)*(n+1)+1.
Comments