A209330 Triangle defined by T(n,k) = binomial(n^2, n*k), for n>=0, k=0..n, as read by rows.
1, 1, 1, 1, 6, 1, 1, 84, 84, 1, 1, 1820, 12870, 1820, 1, 1, 53130, 3268760, 3268760, 53130, 1, 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1, 1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1, 1
Offset: 0
Examples
The triangle of coefficients C(n^2,n*k), n>=k, k=0..n, begins: 1; 1, 1; 1, 6, 1; 1, 84, 84, 1; 1, 1820, 12870, 1820, 1; 1, 53130, 3268760, 3268760, 53130, 1; 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1; 1, 85900584, 675248872536, 39049918716424, 39049918716424, 675248872536, 85900584, 1; ...
Links
Crossrefs
Programs
-
Mathematica
Table[Binomial[n^2, n*k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 05 2018 *)
-
PARI
{T(n,k)=binomial(n^2,n*k)} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
Comments