cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209359 a(n) = 2^n * (n^4 - 4*n^3 + 18*n^2 - 52*n + 75) - 75.

Original entry on oeis.org

0, 1, 33, 357, 2405, 12405, 53877, 207541, 731829, 2411445, 7531445, 22523829, 64991157, 181977013, 496680885, 1326120885, 3473604533, 8947236789, 22706651061, 56869519285, 140755599285, 344683708341, 835954147253, 2009692372917, 4792831180725, 11346431180725
Offset: 0

Views

Author

Bruno Berselli, Mar 07 2012

Keywords

Comments

This sequence is related to A036828 by the transform a(n) = n*A036828(n) - sum(A036828(i), i=0..n-1).

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((1+2*x)*(1+20*x+4*x^2)/((1-x)*(1-2*x)^5)));
    
  • Mathematica
    LinearRecurrence[{11, -50, 120, -160, 112, -32}, {0, 1, 33, 357, 2405, 12405}, 26]
    Table[2^n(n^4-4n^3+18n^2-52n+75)-75,{n,0,30}] (* Harvey P. Dale, Mar 08 2023 *)
  • PARI
    for(n=0, 25, print1(2^n*(n^4-4*n^3+18*n^2-52*n+75)-75", "));

Formula

G.f.: x*(1+2*x)*(1+20*x+4*x^2)/((1-x)*(1-2*x)^5).
a(n) = (1/2) * Sum_{k=0..n} Sum_{i=0..n} k^4 * C(k,i). - Wesley Ivan Hurt, Sep 21 2017