cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A205970 a(n) = Fibonacci(n)*A132973(n) for n>=1, with a(0)=1, where A132973 lists the coefficients in psi(-q)^3/psi(-q^3) and where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -3, 3, -6, 9, 0, 24, -78, 63, -102, 0, 0, 432, -1398, 2262, 0, 2961, 0, 7752, -25086, 0, -65676, 0, 0, 139104, -225075, 728358, -589254, 1906866, 0, 0, -8077614, 6534927, 0, 0, 0, 44791056, -144946902, 234529014, -379475916, 0, 0, 1607485776, -2600966622, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Compare g.f. to the Lambert series of A132973:
1 - 3*Sum_{n>=0} x^(6*n+1)/(1+x^(6*n+1)) - x^(6*n+5)/(1+x^(6*n+5)).

Examples

			G.f.: A(x) = 1 - 3*x + 3*x^2 - 6*x^3 + 9*x^4 + 24*x^6 - 78*x^7 + 63*x^8 +...
where A(x) = 1 - 1*3*x + 1*3*x^2 - 2*3*x^3 + 3*3*x^4 + 8*3*x^6 - 13*6*x^7 + 21*3*x^8 +...+ Fibonacci(n)*A132973(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 - 3*( 1*x/(1+x-x^2) - 5*x^5/(1+11*x^5-x^10) + 13*x^7/(1+29*x^7-x^14) - 89*x^11/(1+199*x^11-x^22) + 233*x^13/(1+521*x^13-x^26) - 1597*x^17/(1+3571*x^17-x^34) +...).
		

Crossrefs

Cf. A209450 (Pell variant).

Programs

  • Mathematica
    A132973:= CoefficientList[Series[(-1)^(-1/4)*EllipticTheta[2, 0, I*Sqrt[q]]^3/EllipticTheta[2, 0, I*Sqrt[q^3]]/4, {q, 0, 60}], q]; Table[If[n == 0, 1, Fibonacci[n]*A132973[[n + 1]]], {n, 0, 50}] (* G. C. Greubel, Dec 03 2017 *)
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1 - 3*sum(m=0,n, fibonacci(6*m+1)*x^(6*m+1)/(1+Lucas(6*m+1)*x^(6*m+1)-x^(12*m+2) +x*O(x^n)) - fibonacci(6*m+5)*x^(6*m+5)/(1+Lucas(6*m+5)*x^(6*m+5)-x^(12*m+10) +x*O(x^n)) ),n)}
    for(n=0,61,print1(a(n),", "))

Formula

G.f.: 1 - 3*Sum_{n>=0} Fibonacci(6*n+1)*x^(6*n+1)/(1 + Lucas(6*n+1) * x^(6*n+1) - x^(12*n+2)) - Fibonacci(6*n+5)*x^(6*n +5)/(1 + Lucas(6*n+5) * x^(6*n+5) - x^(12*n+10)).

A209449 a(n) = Pell(n)*A113973(n) for n>=1, with a(0)=1, where A113973 lists the coefficients in phi(x^3)^3/phi(x) and phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 8, -10, 24, 0, 280, -676, 1632, -1970, 0, 0, 27720, -133844, 646256, 0, 941664, 0, 10976840, -26500436, 0, -154455860, 0, 0, 2173358880, -2623476242, 25334527696, -15290740090, 73830224208, 0, 0, -1038870091396, 2508054264192, 0, 0, 0, 42600007379160
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A113973:
1 - 2*Sum_{n>=1} Kronecker(n,3)*x^n/(1 - (-x)^n).

Examples

			G.f.: A(x) = 1 - 2*x + 8*x^2 - 10*x^3 + 24*x^4 + 280*x^6 - 676*x^7 +...
where A(x) = 1 - 1*2*x + 2*4*x^2 - 5*2*x^3 + 12*2*x^4 + 70*4*x^6 - 169*4*x^7 + 408*4*x^8 +...+ Pell(n)*A113973(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 - 2*( 1*x/(1+2*x-x^2) - 2*x^2/(1-6*x^2+x^4) + 12*x^4/(1-34*x^4+x^8) - 29*x^5/(1+82*x^5-x^10) + 169*x^7/(1+478*x^7-x^14) - 408*x^8/(1-1154*x^8+x^16) +...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    A113973:= CoefficientList[Series[EllipticTheta[3, 0, q^3]^3 /EllipticTheta[3, 0, q], {q, 0, 60}], q]; Table[If[n == 0, 1, Fibonacci[n, 2]*A113973[[n + 1]]], {n, 0, 50}] (* G. C. Greubel, Dec 03 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 - 2*sum(m=1,n,Pell(m)*kronecker(m,3)*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,60,print1(a(n),", "))

Formula

G.f.: 1 - 2*Sum_{n>=1} Pell(n)*Kronecker(n,3)*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A209451 a(n) = Pell(n)*A034896(n) for n >= 1, with a(0)=1, where A034896 lists the number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.

Original entry on oeis.org

1, 4, 8, 20, 240, 696, 280, 5408, 21216, 3940, 57072, 275568, 277200, 1873816, 2585024, 4680600, 54616512, 81841608, 10976840, 530008720, 1919331360, 1235646880, 4474673184, 21605633376, 28253665440, 162655527004, 177341693872, 30581480180, 2953208968320
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A034896:
1 + 4*Sum_{n>=1} Chi(n,3)*n*x^n/(1 - (-x)^n).
Here Chi(n,3) = principal Dirichlet character modulo 3.

Examples

			G.f.: A(x) = 1 + 4*x + 8*x^2 + 20*x^3 + 240*x^4 + 696*x^5 + 280*x^6 + ...
where A(x) = 1 + 1*4*x + 2*4*x^2 + 5*4*x^3 + 12*20*x^4 + 29*24*x^5 + 70*4*x^6 + ... + Pell(n)*A034896(n)*x^n + ...
The g.f. is also given by the identity:
A(x) = 1 + 4*( 1*1*x/(1+2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 12*4*x^4/(1-34*x^4+x^8) + 29*5*x^5/(1+82*x^5-x^10) + 169*7*x^7/(1+478*x^7-x^14) + 408*8*x^8/(1-1154*x^8+x^16) + ...).
The values of the Dirichlet character Chi(n,3) repeat [1,1,0,...].
		

Crossrefs

Programs

  • Mathematica
    A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Join[{1}, Table[Fibonacci[n, 2]*A034896[n], {n, 1, 50}]] (* G. C. Greubel, Dec 24 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + 4*sum(m=1,n,Pell(m)*kronecker(m,3)^2*m*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,61,print1(a(n),", "))

Formula

G.f.: 1 + 4*Sum_{n>=1} Pell(n)*Chi(n,3)*n*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).
Showing 1-3 of 3 results.