cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209451 a(n) = Pell(n)*A034896(n) for n >= 1, with a(0)=1, where A034896 lists the number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.

Original entry on oeis.org

1, 4, 8, 20, 240, 696, 280, 5408, 21216, 3940, 57072, 275568, 277200, 1873816, 2585024, 4680600, 54616512, 81841608, 10976840, 530008720, 1919331360, 1235646880, 4474673184, 21605633376, 28253665440, 162655527004, 177341693872, 30581480180, 2953208968320
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A034896:
1 + 4*Sum_{n>=1} Chi(n,3)*n*x^n/(1 - (-x)^n).
Here Chi(n,3) = principal Dirichlet character modulo 3.

Examples

			G.f.: A(x) = 1 + 4*x + 8*x^2 + 20*x^3 + 240*x^4 + 696*x^5 + 280*x^6 + ...
where A(x) = 1 + 1*4*x + 2*4*x^2 + 5*4*x^3 + 12*20*x^4 + 29*24*x^5 + 70*4*x^6 + ... + Pell(n)*A034896(n)*x^n + ...
The g.f. is also given by the identity:
A(x) = 1 + 4*( 1*1*x/(1+2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 12*4*x^4/(1-34*x^4+x^8) + 29*5*x^5/(1+82*x^5-x^10) + 169*7*x^7/(1+478*x^7-x^14) + 408*8*x^8/(1-1154*x^8+x^16) + ...).
The values of the Dirichlet character Chi(n,3) repeat [1,1,0,...].
		

Crossrefs

Programs

  • Mathematica
    A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Join[{1}, Table[Fibonacci[n, 2]*A034896[n], {n, 1, 50}]] (* G. C. Greubel, Dec 24 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + 4*sum(m=1,n,Pell(m)*kronecker(m,3)^2*m*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,61,print1(a(n),", "))

Formula

G.f.: 1 + 4*Sum_{n>=1} Pell(n)*Chi(n,3)*n*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).