A209454 a(n) = Pell(n)*A033719(n) for n>=1, with a(0)=1, where A033719 lists the coefficients in theta_3(q)*theta_3(q^7).
1, 2, 0, 0, 24, 0, 0, 338, 1632, 1970, 0, 22964, 0, 0, 0, 0, 2824992, 0, 0, 0, 0, 0, 0, 900234724, 0, 2623476242, 0, 0, 36915112104, 178241928596, 0, 0, 5016108528384, 0, 0, 0, 42600007379160, 205691031143924, 0, 0, 0, 0, 0, 40725785296405556, 98320743200877072, 0, 0, 0, 0
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 24*x^4 + 338*x^7 + 1632*x^8 + 1970*x^9 + 22964*x^11 +... where A(x) = 1 + 1*2*x + 12*2*x^4 + 169*2*x^7 + 408*4*x^8 + 985*2*x^9 + 5741*4*x^11 + 470832*6*x^16 + 225058681*4*x^23 +...+ Pell(n)*A033719(n)*x^n +... The g.f. is also given by the identity: A(x) = 1 + 2*( 1*x/(1+2*x-x^2) + 2*x^2/(1-6*x^2+x^4) - 5*x^3/(1+14*x^3-x^6) + 12*x^4/(1-34*x^4+x^8) - 29*x^5/(1+82*x^5-x^10) - 70*x^6/(1-198*x^6+x^12) + 0*169*13*x^7/(1+478*x^7-x^14) +...). The values of the symbol Kronecker(n,7) repeat [1,1,-1,1,-1,-1,0, ...].
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
A033719[n_]:= SeriesCoefficient[EllipticTheta[3, 0, x] EllipticTheta[3, 0, x^7], {x, 0, n}]; Join[{1}, Table[Fibonacci[n, 2]*A033719[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2017 *)
-
PARI
{Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)} {A002203(n)=Pell(n-1)+Pell(n+1)} {a(n)=polcoeff(1 + 2*sum(m=1,n,Pell(m)*kronecker(m,7)*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)} for(n=0,50,print1(a(n),", "))
Comments