A209616 Sum of positive Dyson's ranks of all partitions of n.
0, 1, 2, 4, 7, 12, 18, 29, 42, 63, 89, 128, 176, 246, 333, 453, 603, 807, 1058, 1393, 1807, 2346, 3011, 3867, 4915, 6248, 7879, 9926, 12421, 15529, 19297, 23954, 29585, 36486, 44802, 54937, 67096, 81831, 99459, 120700, 146026, 176410, 212512, 255636, 306734
Offset: 1
Keywords
Examples
For n = 5 we have: -------------------------- Partitions Dyson's of 5 rank -------------------------- 5 5 - 1 = 4 4+1 4 - 2 = 2 3+2 3 - 2 = 1 3+1+1 3 - 3 = 0 2+2+1 2 - 3 = -1 2+1+1+1 2 - 4 = -2 1+1+1+1+1 1 - 5 = -4 -------------------------- The sum of positive Dyson's ranks of all partitions of 5 is 4+2+1 = 7 so a(5) = 7.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- G. E. Andrews, S. H. G. Chan, and B. Kim, The odd moments of ranks and cranks (See the function R_1), Journal of Combinatorial Theory, Series A, Volume 120, Issue 1, January 2013, Pages 77-91.
- F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10-15.
- Frank Garvan, Dyson's rank function and Andrews's SPT-function
Crossrefs
Programs
-
Maple
# Maple program based on Theorem 1 of Andrews-Chan-Kim: M:=101; qinf:=mul(1-q^i,i=1..M); qinf:=series(qinf,q,M); R1:=add((-1)^(n+1)*q^(n*(3*n+1)/2)/(1-q^n),n=1..M); R1:=series(R1/qinf,q,M); seriestolist(%); # N. J. A. Sloane, Sep 04 2012
-
Mathematica
M = 101; qinf = Product[1-q^i, {i, 1, M}]; qinf = Series[qinf, {q, 0, M}]; R1 = Sum[(-1)^(n+1) q^(n(3n+1)/2)/(1-q^n), {n, 1, M}]; R1 = Series[R1/qinf, {q, 0, M}]; CoefficientList[R1, q] // Rest (* Jean-François Alcover, Aug 18 2018, translated from Maple *)
-
PARI
my(N=50, x='x+O('x^N)); concat(0, Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k+1)/2)/(1-x^k)))) \\ Seiichi Manyama, May 21 2023
Formula
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k+1)/2) / (1-x^k). - Seiichi Manyama, May 21 2023
a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (Pi*2^(3/2)*sqrt(n)). - Vaclav Kotesovec, Jul 06 2025
Extensions
More terms from Alois P. Heinz, Mar 10 2012
Comments