cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209616 Sum of positive Dyson's ranks of all partitions of n.

Original entry on oeis.org

0, 1, 2, 4, 7, 12, 18, 29, 42, 63, 89, 128, 176, 246, 333, 453, 603, 807, 1058, 1393, 1807, 2346, 3011, 3867, 4915, 6248, 7879, 9926, 12421, 15529, 19297, 23954, 29585, 36486, 44802, 54937, 67096, 81831, 99459, 120700, 146026, 176410, 212512, 255636, 306734
Offset: 1

Views

Author

Omar E. Pol, Mar 10 2012

Keywords

Comments

The Dyson's rank of a partition is the largest part minus the number of parts.

Examples

			For n = 5 we have:
--------------------------
Partitions        Dyson's
of 5               rank
--------------------------
5               5 - 1 =  4
4+1             4 - 2 =  2
3+2             3 - 2 =  1
3+1+1           3 - 3 =  0
2+2+1           2 - 3 = -1
2+1+1+1         2 - 4 = -2
1+1+1+1+1       1 - 5 = -4
--------------------------
The sum of positive Dyson's ranks of all partitions of 5 is 4+2+1 = 7 so a(5) = 7.
		

Crossrefs

Column 1 of triangle A208482.

Programs

  • Maple
    # Maple program based on Theorem 1 of Andrews-Chan-Kim:
    M:=101;
    qinf:=mul(1-q^i,i=1..M);
    qinf:=series(qinf,q,M);
    R1:=add((-1)^(n+1)*q^(n*(3*n+1)/2)/(1-q^n),n=1..M);
    R1:=series(R1/qinf,q,M);
    seriestolist(%); # N. J. A. Sloane, Sep 04 2012
  • Mathematica
    M = 101;
    qinf = Product[1-q^i, {i, 1, M}];
    qinf = Series[qinf, {q, 0, M}];
    R1 = Sum[(-1)^(n+1) q^(n(3n+1)/2)/(1-q^n), {n, 1, M}];
    R1 = Series[R1/qinf, {q, 0, M}];
    CoefficientList[R1, q] // Rest (* Jean-François Alcover, Aug 18 2018, translated from Maple *)
  • PARI
    my(N=50, x='x+O('x^N)); concat(0, Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k+1)/2)/(1-x^k)))) \\ Seiichi Manyama, May 21 2023

Formula

a(n) = A115995(n) - A195012(n). - Omar E. Pol, Apr 06 2012
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k+1)/2) / (1-x^k). - Seiichi Manyama, May 21 2023
a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (Pi*2^(3/2)*sqrt(n)). - Vaclav Kotesovec, Jul 06 2025

Extensions

More terms from Alois P. Heinz, Mar 10 2012