cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209633 Number of ordered set partitions of the multiset [a,a,1,1,...,1] with two "a" and n "1".

Original entry on oeis.org

1, 2, 7, 15, 33, 59, 111, 182, 307, 481, 757, 1134, 1713, 2483, 3611, 5117, 7238, 10029, 13888, 18900, 25682, 34442, 46057, 60934, 80428, 105159, 137137, 177495, 229069, 293694, 375582, 477499, 605526, 764060, 961603, 1204898, 1506142, 1875150, 2329185, 2882939
Offset: 0

Views

Author

Thomas Wieder, Mar 11 2012

Keywords

Comments

For [a,1,1,...1] one gets A093694, number of one-element transitions from the partitions of n to the partitions of n+1 for labeled parts.

Examples

			For n=4 we have the multiset [a,a,1,1,1,1] with the following a(4) = 33 ordered set partitions:
For [4] one gets [[1,1,1,1]], [[1,1,1,a]], [[1,1,a,a]].
For [3,1] one gets [[1,1,1],[1]], [[1,1,1],[a]], [[1,1,a],[1]], [[1,1,a],[a]], [[1,a,a],[1]].
For [2,2] one gets [[1,1],[1,1]], [[1,1],[1,a]], [[1,1],[a,a]], [[1,a],[1,1]], [[1,a],[1,a]], [[a,a],[1,1]].
For [2,1,1] one gets [[1,1],[1],[1]], [[1,1],[1],[a]], [[1,1],[a],[1]], [[1,1],[a],[a]], [[1,a],[1],[1]], [[1,a],[1],[a]], [[1,a],[a],[1]], [[a,a],[1],[1]].
For [1,1,1,1] one gets [[1],[1],[1],[1]], [[1],[1],[1],[a]], [[1],[1],[a],[1]], [[1],[1],[a],[a]], [[1],[a],[1],[1]], [[1],[a],[1],[a]], [[1],[a],[a],[1]], [[a],[1],[1],[1]], [[a],[1],[1],[a]], [[a],[1],[a],[1]], [[a],[a],[1],[1]].
		

Crossrefs

Cf. A093694.

Programs

  • Maple
    p:= (f, g)-> zip((x, y)-> x+y, f, g, 0):
    b:= proc(n,i) option remember; local f, g;
          if n=0 then [1, 0, [1]]
        elif i<1 then [0, 0, [0]]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0, [0]], b(n-i, i));
             [f[1]+g[1], f[2]+g[2] +`if`(i>1, g[1], 0), p(f[3], [0, g[3][]])]
          fi
        end:
    a:= proc(n) local l, ll;
          if n=0 then return 1 fi;
          l:= b(n, n); ll:= l[3];
          l[2] +add(ll[t+1] *(1+t* (1+(t-1)/2)), t=1..nops(ll)-1)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 11 2012
  • Mathematica
    zip = With[{m = Max[Length[#1], Length[#2]]}, PadRight[#1, m] + PadRight[#2, m]]&; b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1, 0, {1}}, i<1, {0, 0, {0}}, True, f = b[n, i-1]; g = If[i>n, {0, 0, {0}}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + If[i>1, g[[1]], 0], zip[f[[3]], Join[{0}, g[[3]]]]}]]; a[n_] := Module[{l, ll}, If[n == 0, Return[1]]; l = b[n, n]; ll = l[[3]]; l[[2]] + Sum[ll[[t+1]]*(1+t*(1+(t-1)/2)), {t, 1, Length[ll]-1}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 13 2017, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Mar 11 2012