A209665 a(n) = count of monomials, degree k=0 to n, in the power sum symmetric polynomials m(mu,k) summed over all partitions mu of n.
1, 1, 8, 56, 524, 5979, 85539, 1460752, 29112516, 661843866, 16890042828, 477756925128, 14830113520286, 501073056287725, 18303233207719437, 718663995114727640, 30181996254384621880, 1349979517537576728657, 64065538251202398110415, 3215056386968174418054634
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..386
- Wikipedia, Symmetric Polynomials
Crossrefs
Cf. A209664.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))) end: a:= n-> add(b(n$2, k), k=0..n): seq(a(n), n=0..20); # Alois P. Heinz, Nov 24 2016
-
Mathematica
p[n_Integer, v_] := Sum[Subscript[x, j]^n, {j, v}]; p[par_?PartitionQ, v_] := Times @@ (p[#, v] & /@ par); Tr/@ Table[Tr[(p[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 11}, {k, l}]
Extensions
a(0), a(12)-a(19) from Alois P. Heinz, Nov 24 2016
Comments