cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209665 a(n) = count of monomials, degree k=0 to n, in the power sum symmetric polynomials m(mu,k) summed over all partitions mu of n.

Original entry on oeis.org

1, 1, 8, 56, 524, 5979, 85539, 1460752, 29112516, 661843866, 16890042828, 477756925128, 14830113520286, 501073056287725, 18303233207719437, 718663995114727640, 30181996254384621880, 1349979517537576728657, 64065538251202398110415, 3215056386968174418054634
Offset: 0

Views

Author

Wouter Meeussen, Mar 11 2012

Keywords

Comments

Row sums of A209664.

Crossrefs

Cf. A209664.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    a:= n-> add(b(n$2, k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 24 2016
  • Mathematica
    p[n_Integer, v_] := Sum[Subscript[x, j]^n, {j, v}]; p[par_?PartitionQ, v_] := Times @@ (p[#, v] & /@ par); Tr/@ Table[Tr[(p[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 11}, {k, l}]

Extensions

a(0), a(12)-a(19) from Alois P. Heinz, Nov 24 2016