A209799 Composite numbers n such that the concatenation of the digits of the prime divisors of n is a prime number.
4, 6, 8, 9, 12, 16, 18, 21, 22, 24, 25, 27, 32, 33, 36, 39, 44, 46, 48, 49, 51, 54, 58, 63, 64, 66, 70, 72, 81, 82, 88, 92, 93, 96, 99, 108, 111, 115, 116, 117, 121, 125, 128, 132, 133, 140, 141, 142, 144, 147, 153, 154, 159, 162, 164, 165, 166, 169, 176, 177
Offset: 1
Examples
70 is in the sequence because the prime divisors of 70 are {2,5,7} and 257 is prime.
Programs
-
Maple
read("transforms") ; isA209799 := proc(n) local pdivs ; if isprime(n) or n < 4 then return false; end if; pdivs := sort(convert(numtheory[factorset](n),list)) ; isprime(digcatL(pdivs)) ; end proc: for n from 4 to 200 do if isA209799(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Mar 19 2012
-
Mathematica
Select[Range[200],CompositeQ[#]&&PrimeQ[FromDigits[Flatten[ IntegerDigits/@ FactorInteger[#] [[;;,1]]]]]&] (* Harvey P. Dale, Apr 10 2023 *)