cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A209800 Numbers n such that the concatenation of the distinct prime divisors of n is composite.

Original entry on oeis.org

10, 14, 15, 20, 26, 28, 30, 34, 35, 38, 40, 42, 45, 50, 52, 55, 56, 57, 60, 62, 65, 68, 69, 74, 75, 76, 77, 78, 80, 84, 85, 86, 87, 90, 91, 94, 95, 98, 100, 102, 104, 105, 106, 110, 112, 114, 118, 119, 120, 122, 123, 124, 126, 129, 130, 134, 135, 136, 138, 143
Offset: 1

Views

Author

Michel Lagneau, Mar 13 2012

Keywords

Comments

Concatenation is done with smaller factors to the left of larger factors.

Examples

			105 is in the sequence because the prime distinct divisors of 105 are {3,5,7} and 357 = 3*7*17 is composite.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..144] | not IsPrime(t) where t is Seqint(Reverse(&cat[Reverse(Intseq(PrimeDivisors(n)[k])): k in [1..#PrimeDivisors(n)]]))]; // Bruno Berselli, Mar 20 2012
    
  • Maple
    with(numtheory):for n from 1 to 200 do:x:=factorset(n):n1:=nops(x): s:=0:s0:=0:for i from n1 by -1 to 1 do: a:=x[i]:b:=length(a):s:=s+a*10^s0:s0:=s0+b:od: if type(s,prime)=false then printf(`%d, `,n):else fi:od:
  • PARI
    cat(n)=my(f=factor(n),s="");for(i=1,#f[,1],s=Str(s,f[i,1]));eval(s)
    p=7;forprime(q=11,1e3,for(n=p+1,q-1,if(!isprime(cat(n)),print1(n", ")));p=q) \\ Charles R Greathouse IV, Mar 20 2012

A306474 Composite numbers that are anagrams of the concatenation of their prime factors.

Original entry on oeis.org

735, 1255, 3792, 7236, 11913, 12955, 13175, 17276, 17482, 19075, 19276, 23535, 25105, 32104, 34112, 37359, 42175, 100255, 101299, 104392, 105295, 107329, 117067, 117873, 121325, 121904, 121932, 123544, 123678, 124483, 127417, 129595, 131832, 132565, 139925
Offset: 1

Views

Author

Michel Lagneau, Feb 18 2019

Keywords

Comments

The sequence contains two subsequences:
Subsequence 1: numbers with distinct digits. This finite subsequence begins with the numbers 735, 3792, 7236, 17482, 19075, 19276, 32104, ...
Subsequence 2: numbers with non-distinct digits. This subsequence begins with the numbers 1255, 11913, 12955, 13175, 17276, 23535, ...

Examples

			3792 is in the sequence because the concatenation of the prime distinct divisors {2, 3, 79} is 2379, anagram of 3792.
		

Crossrefs

A121342 is a subsequence.

Programs

  • Maple
    with(numtheory):
    for n from 1 to 140000 do:
    if type(n,prime)=false
      then
      x:=factorset(n):n1:=nops(x): s:=0:s0:=0:
        for i from n1 by -1 to 1 do:
         a:=x[i]:b:=length(a):s:=s+a*10^s0:s0:=s0+b:
        od:
          if sort(convert(n, base, 10)) = sort(convert(s, base, 10))
           then
            printf(`%d, `, n):
            else
          fi:fi:
         od:
  • Mathematica
    Select[Range[2,140000],If [!PrimeQ[#],Sort@IntegerDigits@#==Sort[Join@@IntegerDigits[First/@FactorInteger[#]]]]&]

A287916 Numbers m such that the decimal digits of m are exactly the same as those of all the indices corresponding to the prime factors of m.

Original entry on oeis.org

12, 14, 123, 154, 2127, 2391, 3614, 4031, 5318, 7174, 8491, 11142, 12435, 12830, 18126, 20314, 23514, 24612, 25201, 28731, 31934, 42158, 50314, 51124, 61411, 62116, 65315, 72401, 73201, 81254, 81372, 92315, 93243, 112924, 123126, 123612, 123861, 124341, 125102
Offset: 1

Views

Author

Michel Lagneau, Jul 11 2017

Keywords

Comments

The sequence contains two subsequences:
Subsequence 1: numbers with distinct digits. This finite subsequence begins with the numbers 12, 14, 123, 154, 2391, 3614, 4031, 5318, 8491, 12435, 12830, 23514, ... (see example 1)
Subsequence 2: numbers with non-distinct digits (see example 2). This subsequence begins with the numbers 2127, 7174, 11142, 18126, ...

Examples

			12435 is in the sequence because the prime factors are {3, 5, 829} with 3 = prime(2), 5 = prime(3) and 829 = prime(145). The decimal digits corresponding to the indices {2, 3, 145} of the prime divisors are the same as the digits of the number 12435.
61411 is in the sequence because the prime factors are {7, 31, 283} with 7 = prime(4), 31 = prime(11) and 283 = prime(61). The decimal digits corresponding to the indices {4, 11, 61} are the same as the digits of the number 61411.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=200000:
    for n from 10 to nn do:
      x:=convert(n,base,10):n0:=nops(x):U:=array(0..9,[0$10]):
       for a from 1 to n0 do:
        U[x[a]]:=U[x[a]]+1:
       od:
       y:=factorset(n):n1:=nops(y):V:=array(0..9,[0$10]):
      for i from 1 to n1 do :
        p:=y[i]:ii:=0:
          for k from 1 to 10000 while(ii=0) do:
            if ithprime(k) = p
            then
            ii:=1:z:=convert(k,base,10):nz:=nops(z):
               for b from 1 to nz do:
                V[z[b]]:=V[z[b]]+1:
               od:
            else
            fi:
          od:
         od:
           jj:=0:
           for b from 0 to 9 do:
            if U[b]<>V[b] then jj:=1:
            else fi:
           od:
            if jj=0
             then print(n):
             else fi:
         od:
  • Mathematica
    Select[Range[125102], Sort@ IntegerDigits@ # == Sort[Join @@ IntegerDigits[ PrimePi[ First /@ FactorInteger[#]]]] &] (* Giovanni Resta, Jul 11 2017 *)
Showing 1-3 of 3 results.