cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209805 Triangle read by rows: T(n,k) is the number of k-block noncrossing partitions of n-set up to rotations.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 10, 10, 3, 1, 1, 3, 15, 25, 15, 3, 1, 1, 4, 26, 64, 64, 26, 4, 1, 1, 4, 38, 132, 196, 132, 38, 4, 1, 1, 5, 56, 256, 536, 536, 256, 56, 5, 1, 1, 5, 75, 450, 1260, 1764, 1260, 450, 75, 5, 1
Offset: 1

Views

Author

Tilman Piesk, Mar 13 2012

Keywords

Comments

Like the Narayana triangle A001263 (and unlike A152175) this triangle is symmetric.
The diagonal entries are 1, 1, 4, 25, 196, 1764, ... which is probably sequence A001246 - the squares of the Catalan numbers.
The above conjecture about the diagonal entries T(2*n-1, n) is true since gcd(2*n-1, n) = gcd(2*n-1, n-1) = 1 and then T(2*n-1, n) simplifies to A001246(n-1) using the formula given below. - Andrew Howroyd, Nov 15 2017

Examples

			Triangle begins:
  1;
  1,   1;
  1,   1,   1;
  1,   2,   2,   1;
  1,   2,   4,   2,   1;
  1,   3,  10,  10,   3,   1;
  1,   3,  15,  25,  15,   3,   1;
  1,   4,  26,  64,  64,  26,   4,   1;
  1,   4,  38, 132, 196, 132,  38,   4,   1;
  1,   5,  56, 256, 536, 536, 256,  56,   5,   1;
		

Crossrefs

Cf. A054357 (row sums), A001246 (square Catalan numbers).

Programs

  • Mathematica
    b[n_, k_] := Binomial[n-1, n-k] Binomial[n, n-k];
    T[n_, k_] := (DivisorSum[GCD[n, k], EulerPhi[#] b[n/#, k/#]&] + DivisorSum[GCD[n, k - 1], EulerPhi[#] b[n/#, (n + 1 - k)/#]&] - k Binomial[n, k]^2/(n - k + 1))/n;
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
  • PARI
    b(n,k)=binomial(n-1,n-k)*binomial(n,n-k);
    T(n,k)=(sumdiv(gcd(n,k), d, eulerphi(d)*b(n/d,k/d)) + sumdiv(gcd(n,k-1), d, eulerphi(d)*b(n/d,(n+1-k)/d)) - k*binomial(n,k)^2/(n-k+1))/n; \\ Andrew Howroyd, Nov 15 2017

Formula

T(n,k) = (1/n)*((Sum_{d|gcd(n,k)} phi(d)*A103371(n/d-1,k/d-1)) + (Sum_{d|gcd(n,k-1)} phi(d)*A103371(n/d-1,(n+1-k)/d-1)) - A132812(n,k)). - Andrew Howroyd, Nov 15 2017