A209805 Triangle read by rows: T(n,k) is the number of k-block noncrossing partitions of n-set up to rotations.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 10, 10, 3, 1, 1, 3, 15, 25, 15, 3, 1, 1, 4, 26, 64, 64, 26, 4, 1, 1, 4, 38, 132, 196, 132, 38, 4, 1, 1, 5, 56, 256, 536, 536, 256, 56, 5, 1, 1, 5, 75, 450, 1260, 1764, 1260, 450, 75, 5, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 1, 1; 1, 2, 2, 1; 1, 2, 4, 2, 1; 1, 3, 10, 10, 3, 1; 1, 3, 15, 25, 15, 3, 1; 1, 4, 26, 64, 64, 26, 4, 1; 1, 4, 38, 132, 196, 132, 38, 4, 1; 1, 5, 56, 256, 536, 536, 256, 56, 5, 1;
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Tilman Piesk, Partition related number triangles (Wikiversity)
- Tilman Piesk, Brute force MATLAB code used to calculate the rows (Pastebin)
Crossrefs
Programs
-
Mathematica
b[n_, k_] := Binomial[n-1, n-k] Binomial[n, n-k]; T[n_, k_] := (DivisorSum[GCD[n, k], EulerPhi[#] b[n/#, k/#]&] + DivisorSum[GCD[n, k - 1], EulerPhi[#] b[n/#, (n + 1 - k)/#]&] - k Binomial[n, k]^2/(n - k + 1))/n; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
-
PARI
b(n,k)=binomial(n-1,n-k)*binomial(n,n-k); T(n,k)=(sumdiv(gcd(n,k), d, eulerphi(d)*b(n/d,k/d)) + sumdiv(gcd(n,k-1), d, eulerphi(d)*b(n/d,(n+1-k)/d)) - k*binomial(n,k)^2/(n-k+1))/n; \\ Andrew Howroyd, Nov 15 2017
Formula
T(n,k) = (1/n)*((Sum_{d|gcd(n,k)} phi(d)*A103371(n/d-1,k/d-1)) + (Sum_{d|gcd(n,k-1)} phi(d)*A103371(n/d-1,(n+1-k)/d-1)) - A132812(n,k)). - Andrew Howroyd, Nov 15 2017
Comments