cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209888 Number of binary words of length n containing no subword 01101.

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 60, 116, 225, 436, 845, 1637, 3172, 6146, 11909, 23075, 44711, 86633, 167863, 325256, 630226, 1221144, 2366125, 4584673, 8883398, 17212733, 33351899, 64623621, 125216632, 242623433, 470114310, 910907331, 1765000872, 3419917668, 6626533192
Offset: 0

Views

Author

Alois P. Heinz, Mar 14 2012

Keywords

Comments

Notice that the proper suffix 01 of 01101 is also a prefix of 01101. If instead of 01101 subword 01011 is not allowed, we get A107066 with A107066(n) < a(n) for all n >= 8. Word 01101101 of length 8 is the smallest binary word having two or more copies of 01101.

Examples

			a(6) = 60 because among the 2^6 = 64 binary words of length 6 only 4, namely 001101, 011010, 011011 and 101101 contain the subword 01101.
		

Crossrefs

Column 22 of A209972.
Column k=0 of A277751.

Programs

  • Maple
    a:= n-> (Matrix(5, (i, j)-> `if`(i=j-1, 1, `if`(i=5, [-1, 2, -1, 0, 2][j], 0)))^n. <<1, 2, 4, 8, 16>>)[1, 1]: seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[(x + 1)*(x^2 - x + 1)/(x^5 - 2*x^4 + x^3 - 2*x + 1), {x, 0, 40}], x] (* Wesley Ivan Hurt, Apr 28 2017 *)
    LinearRecurrence[{2,0,-1,2,-1},{1,2,4,8,16},40] (* Harvey P. Dale, Sep 17 2017 *)

Formula

G.f.: (x+1)*(x^2-x+1) / (x^5-2*x^4+x^3-2*x+1).
a(n) = 2^n if n<5, and a(n) = 2*(a(n-1)+a(n-4)) -a(n-3) -a(n-5) otherwise.