A209888 Number of binary words of length n containing no subword 01101.
1, 2, 4, 8, 16, 31, 60, 116, 225, 436, 845, 1637, 3172, 6146, 11909, 23075, 44711, 86633, 167863, 325256, 630226, 1221144, 2366125, 4584673, 8883398, 17212733, 33351899, 64623621, 125216632, 242623433, 470114310, 910907331, 1765000872, 3419917668, 6626533192
Offset: 0
Keywords
Examples
a(6) = 60 because among the 2^6 = 64 binary words of length 6 only 4, namely 001101, 011010, 011011 and 101101 contain the subword 01101.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,2,-1).
Programs
-
Maple
a:= n-> (Matrix(5, (i, j)-> `if`(i=j-1, 1, `if`(i=5, [-1, 2, -1, 0, 2][j], 0)))^n. <<1, 2, 4, 8, 16>>)[1, 1]: seq(a(n), n=0..40);
-
Mathematica
CoefficientList[Series[(x + 1)*(x^2 - x + 1)/(x^5 - 2*x^4 + x^3 - 2*x + 1), {x, 0, 40}], x] (* Wesley Ivan Hurt, Apr 28 2017 *) LinearRecurrence[{2,0,-1,2,-1},{1,2,4,8,16},40] (* Harvey P. Dale, Sep 17 2017 *)
Formula
G.f.: (x+1)*(x^2-x+1) / (x^5-2*x^4+x^3-2*x+1).
a(n) = 2^n if n<5, and a(n) = 2*(a(n-1)+a(n-4)) -a(n-3) -a(n-5) otherwise.
Comments