Original entry on oeis.org
0, 0, 3, 5, 9, 13, 19, 25, 33, 39, 51, 61, 69, 81, 99, 107, 123, 139, 157, 175, 191, 203, 233, 255, 271, 291, 327, 345, 369, 397, 421, 451, 483, 503, 551, 575, 599, 635, 689, 713, 745, 785, 821, 863, 903, 927, 993, 1039, 1071, 1113, 1173
Offset: 0
A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A197168
Number of 2 X 2 integer matrices with elements from {1,...,n} whose determinant is 2.
Original entry on oeis.org
0, 0, 2, 6, 18, 30, 50, 70, 98, 118, 162, 198, 226, 270, 338, 366, 426, 486, 554, 622, 682, 726, 842, 926, 986, 1062, 1202, 1270, 1362, 1470, 1562, 1678, 1802, 1878, 2066, 2158, 2250, 2390, 2602, 2694, 2818, 2974, 3114, 3278, 3434, 3526, 3786, 3966, 4090, 4254, 4490
Offset: 0
-
Table[cnt = 0; Do[If[a*d-b*c == 2, cnt++], {a, n}, {b, n}, {c, n}, {d, n}]; cnt, {n, 50}] (* T. D. Noe, Oct 11 2011 *)
Showing 1-3 of 3 results.
Comments