cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210068 Expansion of 1/((1-x)^2*(1-x^2)^3*(1-x^3)^2*(1-x^4)).

Original entry on oeis.org

1, 2, 6, 12, 25, 44, 79, 128, 208, 318, 483, 704, 1019, 1430, 1992, 2712, 3664, 4862, 6407, 8320, 10735, 13686, 17344, 21760, 27153, 33592, 41353, 50532, 61468, 74290, 89415, 107008, 127576, 151332, 178882, 210496, 246898, 288420, 335920
Offset: 0

Views

Author

F. Chapoton, Mar 17 2012

Keywords

Comments

This is associated with the root system E7, and can be described using the additive function on the affine E7 diagram:
2
|
1--2--3--4--3--2--1

Crossrefs

For G2, the corresponding sequence is A001399.
For F4, the corresponding sequence is A115264.
For E6, the corresponding sequence is A164680.
For E8, the corresponding sequence is A045513.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)^2*(1-x^2)^3*(1-x^3)^2*(1-x^4)) )); // G. C. Greubel, Jan 13 2020
  • Maple
    seq(coeff(series(1/((1-x)^2*(1-x^2)^3*(1-x^3)^2*(1-x^4)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Jan 13 2020
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^2)^3*(1-x^3)^2*(1-x^4)), {x,0,40}], x] (* G. C. Greubel, Jan 13 2020 *)
    LinearRecurrence[{2,2,-4,-3,0,7,4,-5,-4,-5,4,7,0,-3,-4,2,2,-1},{1,2,6,12,25,44,79,128,208,318,483,704,1019,1430,1992,2712,3664,4862},40] (* Harvey P. Dale, Sep 24 2021 *)
  • PARI
    Vec(1/((1-x)^2*(1-x^2)^3*(1-x^3)^2*(1-x^4))+O(x^40)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • Sage
    x=PowerSeriesRing(QQ,'x',40).gen()
    1/((1-x)^2*(1-x^2)^3*(1-x^3)^2*(1-x^4))
    

Formula

G.f.: 1/((1-x)^2*(1-x^2)^3*(1-x^3)^2*(1-x^4)).