A210068 Expansion of 1/((1-x)^2*(1-x^2)^3*(1-x^3)^2*(1-x^4)).
1, 2, 6, 12, 25, 44, 79, 128, 208, 318, 483, 704, 1019, 1430, 1992, 2712, 3664, 4862, 6407, 8320, 10735, 13686, 17344, 21760, 27153, 33592, 41353, 50532, 61468, 74290, 89415, 107008, 127576, 151332, 178882, 210496, 246898, 288420, 335920
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, 2, -4, -3, 0, 7, 4, -5, -4, -5, 4, 7, 0, -3, -4, 2, 2, -1).
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)^2*(1-x^2)^3*(1-x^3)^2*(1-x^4)) )); // G. C. Greubel, Jan 13 2020 -
Maple
seq(coeff(series(1/((1-x)^2*(1-x^2)^3*(1-x^3)^2*(1-x^4)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Jan 13 2020
-
Mathematica
CoefficientList[Series[1/((1-x)^2*(1-x^2)^3*(1-x^3)^2*(1-x^4)), {x,0,40}], x] (* G. C. Greubel, Jan 13 2020 *) LinearRecurrence[{2,2,-4,-3,0,7,4,-5,-4,-5,4,7,0,-3,-4,2,2,-1},{1,2,6,12,25,44,79,128,208,318,483,704,1019,1430,1992,2712,3664,4862},40] (* Harvey P. Dale, Sep 24 2021 *)
-
PARI
Vec(1/((1-x)^2*(1-x^2)^3*(1-x^3)^2*(1-x^4))+O(x^40)) \\ Charles R Greathouse IV, Sep 26 2012
-
Sage
x=PowerSeriesRing(QQ,'x',40).gen() 1/((1-x)^2*(1-x^2)^3*(1-x^3)^2*(1-x^4))
Formula
G.f.: 1/((1-x)^2*(1-x^2)^3*(1-x^3)^2*(1-x^4)).
Comments