cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A210337 Sum of distinct residues of all factorials mod 2^n.

Original entry on oeis.org

0, 1, 3, 9, 17, 49, 153, 281, 665, 1433, 3225, 7705, 17945, 47641, 64025, 129561, 293401, 752153, 1341977, 2914841, 6421017, 14547481, 33421849, 71170585, 138279449, 247331353, 645790233, 1182661145, 2558392857, 5779618329, 11685198361, 23496358425
Offset: 0

Views

Author

Vladimir Shevelev, Mar 20 2012

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) local p, m, i, s;
          p:= 2^n;
          m:= 1;
          s:= {};
          for i to p while m<>0 do m:= m*i mod p; s:=s union {m} od;
          add(i, i=s)
        end:
    seq (a(n), n=0..40);  # Alois P. Heinz, Mar 20 2012
  • Mathematica
    a[n_] := Module[{k=0, s={}},  While[(r = Mod[k!, 2^n]) > 0, k++; AppendTo[s,r]]; Total@Union@s]; Array[a, 32, 0] (* Amiram Eldar, Dec 15 2018 *)
  • PARI
    nbf(n) = my(k=1); while(k! % 2^n, k++); k; \\ A007843
    a(n) = my(nb=nbf(n)); vecsum(Set(vector(nb, k, k! % 2^n))); \\ Michel Marcus, Dec 15 2018

Extensions

More terms from Alois P. Heinz, Mar 20 2012
Showing 1-1 of 1 results.