A210250 Area A of the cyclic quadrilaterals such that A, the sides and the radius of the circumcircle are integers.
48, 192, 240, 432, 480, 672, 768, 936, 960, 1200, 1440, 1680, 1728, 1920, 2160, 2352, 2640, 2688, 2856, 3072, 3744, 3840, 3864, 3888, 4032, 4320, 4368, 4536, 4800, 5016, 5040, 5376, 5712, 5760, 5808, 5880, 6000, 6048, 6072, 6696, 6720, 6912, 7056, 7392, 7560, 7680, 7728, 7752, 7920
Offset: 1
Keywords
Examples
48 is in the sequence because, for (a,b,c,d) = (6,6,8,8), s = (6+6+8+8)/2 = 14; A = sqrt((14-6)(14-6)(14-8)(14-8)) = 48; R = sqrt((6*6+8*8)(6*8+6*8)(6*8+6*8))/(4*48) = 960/192 = 5.
References
- Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32.
Links
- Mohammad K. Azarian, Solution to Problem S125: Circumradius and Inradius, Math Horizons, Vol. 16, Issue 2, November 2008, p. 32.
- E. Gürel, Solution to Problem 1472, Maximal Area of Quadrilaterals, Math. Mag. 69 (1996), 149.
- Eric Weisstein's World of Mathematics, Cyclic Quadrilateral
Programs
-
Mathematica
SMax=8000; Do[ Do[ x=S^2/(u v w); If[u+v+w+x//OddQ,Continue[]]; If[v+w+x<=u,Continue[]]; r=Sqrt[v w+u x]Sqrt[u w+v x]Sqrt[u v+w x]/(4S); If[r//IntegerQ//Not,Continue[]]; (*{a,b,c,d}=(u+v+w+x)/2-{u,v,w,x};{a,b,c,d,r,S}//Sow*); S//Sow;Break[];(*to generate a table, comment out this line and uncomment previous line*) ,{u,S^2//Divisors//Select[#,S<=#^2&]&} ,{v,S^2/u//Divisors//Select[#,S^2<=u#^3&<=u&]&} ,{w,S^2/(u v)//Divisors//Select[#,S^2<=u v#^2&<=v&]&} ] ,{S,24,SMax,24} ]//Reap//Last//Last {x,r,a,b,c,d}=.; (* Albert Lau, May 25 2016 *)
Extensions
Incorrect Mathematica program removed by Albert Lau, May 25 2016
Missing term 5880 and more terms from Albert Lau, May 25 2016
Comments