A230136 Integer areas A of integer-sided cyclic quadrilaterals such that the circumradius is of prime length.
48, 240, 480, 1440, 1680, 2640, 5040, 6720, 7920, 10560, 12480, 13680, 18720, 21840, 28560, 31200, 32640, 34320, 36960, 44880, 48720, 53040, 63840, 71760, 77520, 85680, 87360, 92400, 100320, 110400, 115920, 118560, 140400, 147840, 182160, 187680, 201600, 215280, 235200, 236640, 244800, 255360, 257040, 265200, 277200
Offset: 1
Keywords
Examples
48 is in the sequence because, for (a,b,c,d) = (6,6,8,8) and : s = (6+6+8+8)/2 = 14; A = sqrt((14-6)(14-6)(14-8)(14-8))=48; R = sqrt((6*6+8*8)(6*8+6*8)(6*8+6*8))/(4*48) = 960/192 = 5 is prime.
Links
- Mohammad K. Azarian, Solution to Problem S125: Circumradius and Inradius, Math Horizons, Vol. 16, Issue 2, November 2008, p. 32.
- E. Gürel, Solution to Problem 1472, Maximal Area of Quadrilaterals, Math. Mag. 69 (1996), 149.
- Kival Ngaokrajang, Illustration of initial terms
- Eric Weisstein's World of Mathematics, Cyclic Quadrilateral
Crossrefs
Cf. A210250.
Programs
-
Mathematica
SMax = 277300 Do[ Do[ x=S^2/(u v w); If[u+v+w+x//OddQ, Continue[]]; If[v+w+x<=u, Continue[]]; r=Sqrt[v w+u x]Sqrt[u w+v x]Sqrt[u v+w x]/(4S); If[r//PrimeQ//Not, Continue[]]; (*{a, b, c, d}=(u+v+w+x)/2-{u, v, w, x}; {a, b, c, d, r, S}//Sow*); S//Sow; Break[]; (*to generate a table, comment out this line and uncomment previous line*) , {u, S^2//Divisors//Select[#, S<=#^2&]&} , {v, S^2/u//Divisors//Select[#, S^2<=u#^3&<=u&]&} , {w, S^2/(u v)//Divisors//Select[#, S^2<=u v#^2&<=v&]&} ] , {S, 24, SMax, 24} ]//Reap//Last//Last {x, r, a, b, c, d}=.; (* Zachary Sizer, Jan 02 2025, adapted from the program for A210250 by Albert Lau *)
Extensions
Incorrect program removed and missing term 85680 and others added by Zachary Sizer, Jan 02 2025
Comments