cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A289155 Smallest area of triangle with integer sides and area = n times perimeter.

Original entry on oeis.org

24, 84, 192, 336, 540, 756, 1134, 1344, 1710, 2100, 2640, 3000, 4056, 4116, 4680, 5376, 6936, 6804, 8664, 8400, 9240, 10164, 12696, 12000, 13500, 14196, 15390, 16296, 20184, 18720, 23064, 21504, 23232, 24276, 26040, 27000, 32856, 30324
Offset: 1

Views

Author

Zhining Yang, Jun 26 2017

Keywords

Examples

			For n = 4, a(4)=336 means for the smallest triangle (a,b,c) = (26,28,30), the area is 336, which is 4 times the perimeter 84.
		

Crossrefs

a(n) is the leading entry in row n of the triangle in A290451.

Programs

  • PARI
    for(k=1, 50, n=0;A=10^9; d=4*k^2; e=3*d; for(b=1, sqrt(e), for (c=2*k, e/b, if(b*c>d&&c>=b, f = (b + c)*d / (b * c - d); if(f>=c, a=floor(f); if(a==f, n++; s=2*(a+b+c)*k;if(s
    				

Formula

a(n) = A120572(2n). - Ray Chandler, Jul 27 2017

A289156 Largest area of triangles with integer sides and area = n times perimeter.

Original entry on oeis.org

60, 1224, 8436, 34320, 103020, 254040, 546084, 1060896, 1907100, 3224040, 5185620, 8004144, 11934156, 17276280, 24381060, 33652800, 45553404, 60606216, 79399860, 102592080, 130913580, 165171864, 206255076, 255135840, 312875100, 380625960, 459637524, 551258736
Offset: 1

Views

Author

Zhining Yang, Jun 26 2017

Keywords

Examples

			For n = 4, a(4) = 34320 means for the largest triangles (a,b,c) = (66,4225,4289), the area is 34320 which is 4 times the perimeter 8580.
		

Crossrefs

Programs

  • Mathematica
    Table[4 n (2 n^2 + 1) (4 n^2 + 1), {n, 27}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {60, 1224, 8436, 34320, 103020, 254040}, 27] (* or *) Rest@ CoefficientList[Series[12 x (5 + 72 x + 166 x^2 + 72 x^3 + 5 x^4)/(1 - x)^6, {x, 0, 27}], x] (* Michael De Vlieger, Jul 03 2017 *)
  • PARI
    Vec(12*x*(5 + 72*x + 166*x^2 + 72*x^3 + 5*x^4)/(1 - x)^6 + O(x^30)) \\ Colin Barker, Jun 28 2017

Formula

From Colin Barker, Jun 28 2017: (Start)
G.f.: 12*x*(5 + 72*x + 166*x^2 + 72*x^3 + 5*x^4)/(1 - x)^6.
a(n) = 4*n*(2*n^2 + 1)*(4*n^2 + 1).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6. (End)
a(n) = A120573(2*n). - Ray Chandler, Jul 27 2017
From Elmo R. Oliveira, Sep 01 2025: (Start)
E.g.f.: 4*exp(x)*x*(15 + 138*x + 206*x^2 + 80*x^3 + 8*x^4).
a(n) = 12*A005900(n)*A053755(n) = A053755(n)*A007900(n)/2. (End)

A230195 Integer areas A of the triangles such that A and the sides are integers, and the length of the inradius is a prime number.

Original entry on oeis.org

24, 30, 36, 42, 48, 54, 60, 66, 84, 96, 114, 120, 126, 150, 156, 198, 210, 270, 294, 330, 336, 390, 420, 462, 504, 510, 546, 570, 630, 714, 726, 756, 810, 840, 924, 930, 1008, 1014, 1056, 1134, 1386, 1428, 1554, 1638, 1680, 1716, 1734, 1848, 1890, 1950, 2016
Offset: 1

Views

Author

Michel Lagneau, Oct 11 2013

Keywords

Comments

Subsequence of A228383.
The corresponding inradii r are 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 5, 7, 5, 7, 5, 7, 7, 7, 5, 7, 5, ...
The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. The inradius r is given by r = A/s.

Examples

			24 is in the sequence because for (a, b, c) = (6, 8, 10) => s =(6 + 8 + 10)/2 = 12; A = sqrt(12*(12-6)*(12-8)*(12-10)) = sqrt(576)= 24; r = A/s = 2 is prime.
		

Crossrefs

Cf. A228383.

Programs

  • Mathematica
    nn = 1500; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]] && PrimeQ[Sqrt[area2]/s], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]

A230491 Integer areas of the integer-sided triangles such that the length of the inradius is a square.

Original entry on oeis.org

6, 84, 96, 108, 120, 132, 144, 156, 168, 180, 240, 264, 300, 324, 396, 420, 432, 468, 486, 504, 540, 594, 630, 684, 720, 756, 864, 990, 1026, 1080, 1116, 1134, 1152, 1224, 1332, 1344, 1404, 1440, 1494, 1536, 1584, 1638, 1680, 1710, 1728, 1782, 1824, 1872, 1890
Offset: 1

Views

Author

Michel Lagneau, Oct 20 2013

Keywords

Comments

The primitive areas are 6, 84, 108, 120, 132, 144, 156, 168, ...
The non-primitive areas 16*a(n) are in the sequence because if r is the inradius corresponding to a(n), then 4*r is the inradius corresponding to 16*a(n).
The following table gives the first values (A, r, a, b, c) where A is the integer area, r the inradius and a, b, c are the integer sides of the triangle.
******************************
* A * r * a * b * c *
*******************************
* 6 * 1 * 3 * 4 * 5 *
* 84 * 4 * 13 * 14 * 15 *
* 96 * 4 * 12 * 16 * 20 *
* 108 * 4 * 15 * 15 * 24 *
* 120 * 4 * 10 * 24 * 26 *
* 132 * 4 * 11 * 25 * 30 *
* 144 * 4 * 18 * 20 * 34 *
* 156 * 4 * 15 * 26 * 37 *
* 168 * 4 * 10 * 35 * 39 *
* 180 * 4 * 9 * 40 * 41 *
* 240 * 4 * 12 * 50 * 58 *
* 264 * 4 * 33 * 34 * 65 *
* 300 * 4 * 25 * 51 * 74 *
* 324 * 4 * 9 * 75 * 78 *
* 396 * 4 * 11 * 90 * 97 *
* 420 * 4 * 21 * 85 * 104 *
* 432 * 9 * 30 * 30 * 36 *
* 468 * 9 * 25 * 39 * 40 *
.........................

Examples

			84 is in the sequence because the area of triangle (13, 14, 15) is given by Heron's formula A = sqrt(21*(21-13)*(21-14)*(21-15))= 84 where the number 21 is the semiperimeter and the inradius is given by r = A/s = 84/21 = 4 is a square.
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

Programs

  • Mathematica
    nn = 600; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 && IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[Sqrt[area2]/s]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]

Formula

Area A = sqrt(s*(s-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula) and inradius r = A/s.
Showing 1-4 of 4 results.