A210258 The coefficients of the Girard-Waring formula; irregular array T(n,k), read by rows, for n >= 1 and 1 <= k <= A000041(n).
1, 1, -2, 1, -3, 3, 1, -4, 4, 2, -4, 1, -5, 5, 5, -5, -5, 5, 1, -6, 6, 9, -6, -12, 6, -2, 6, 3, -6, 1, -7, 7, 14, -7, -21, 7, -7, 14, 7, -7, 7, -7, -7, 7, 1, -8, 8, 20, -8, -32, 8, -16, 24, 12, -8, 24, -16, -16, 8, 2, -8, -8, 8, 8, 8, -8, 1, -9, 9, 27, -9, -45
Offset: 1
Examples
Array T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows: S_1: 1; S_2: 1, -2; S_3: 1, -3, 3; S_4: 1, -4, 4, 2, -4; S_5: 1, -5, 5, 5, -5, -5, 5; S_6: 1, -6, 6, 9, -6, -12, 6, -2, 6, 3, -6; S_7: 1, -7, 7, 14, -7, -21, 7, -7, 14, 7, -7, 7, -7, -7, 7; ... With N = n = 6, we have S_6 = 1*(e_1)^6 - 6*(e_1)^4*(e_2) + 6*(e_1)^3*(e_3) + 9*(e_1)^2*(e_2)^2 - 6*(e_1)^2*(e_4) - 12*(e_1)*(e_2)*(e_3) + 6*(e_1)*(e_5) - 2*(e_2)^3 + 6*(e_2)*(e_4) + 3*(e_3)^2 - 6*(e_6) = Sum_{i = 1..6} x_i^6. If N = 4 < n = 6, we set e_5 = e_6 = 0 in the above expression, and we get that S_6 = 1*(e_1)^6 - 6*(e_1)^4*(e_2) + 6*(e_1)^3*(e_3) + 9*(e_1)^2*(e_2)^2 - 6*(e_1)^2*(e_4) - 12*(e_1)*(e_2)*(e_3) - 2*(e_2)^3 + 6*(e_2)*(e_4) + 3*(e_3)^2 = Sum_{i = 1..4} x_i^6.
Links
- Kahtan H. Alzubaidy, Symmetric polynomials by Maple, 2015 (requires Maple 13).
- Henri W. Gould, The Girard-Waring power sum formulas for symmetric functions and Fibonacci sequences, Fibonacci Quart. 37(2) (1999), 135-140. [He uses a signed version of the elementary symmetric polynomials: a_j = (-1)^j*e_j. This is why here we have (-1)^(t_2 + t_4 + ... + t_{2*floor(n/2)}) in the formula for c(t_1,...,t_n) rather than (-1)^(t_1 + ... + t_n).]
- OEIS, Orderings of partitions.
- Wikipedia, Newton's identities.
- Gregory Gerard Wojnar, Daniel Sz. Wojnar, and Leon Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, arXiv:1706.08381 [math.GM], 2017. See p. 4.
Crossrefs
Cf. A115131 (Abramowitz-Stegun order of partitions).
Extensions
Various sections edited by Petros Hadjicostas, Dec 14 2019
Comments