cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A210277 a(n) = (3*n)!/3^n.

Original entry on oeis.org

1, 2, 80, 13440, 5913600, 5381376000, 8782405632000, 23361198981120000, 94566133475573760000, 553211880832106496000000, 4492080472356704747520000000, 49017582114356362204938240000000, 699971072593008852286518067200000000
Offset: 0

Views

Author

Mohammad K. Azarian, Mar 20 2012

Keywords

Crossrefs

Programs

Formula

E.g.f.: 1/(1-x^3/3).
a(n) = Product_{i=1..n} (2*binomial(3i,3)). - James Mahoney, Apr 04 2012
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=0} 1/a(n) = exp(3^(1/3))/3 + (2/3)*exp(-3^(1/3)/2)*cos(3^(5/6)/2).
Sum_{n>=0} (-1)^n/a(n) = exp(-3^(1/3))/3 + (2/3)*exp(3^(1/3)/2)*cos(3^(5/6)/2). (End)

A210279 (6n)!/6^n.

Original entry on oeis.org

1, 120, 13305600, 29640619008000, 478741050720092160000, 34111736086958726676480000000, 7973107998754741458076119859200000000, 5019026197962676820927435579005599744000000000
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 12 2012

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(6*n)/6^n: n in [0..10]]; // Vincenzo Librandi, Feb 15 2013
  • Mathematica
    Table[(6 n)!/6^n, {n, 0, 11}] (* Vincenzo Librandi, Feb 15 2013 *)
    With[{nn=50},Take[CoefficientList[Series[1/(1-x^6/6),{x,0,nn}],x] Range[0,nn-2]!,{1,-1,6}]] (* Harvey P. Dale, Sep 25 2023 *)

Formula

E.g.f.: 1/(1-x^6/6).

A210280 (7n)!/7^n.

Original entry on oeis.org

1, 720, 1779148800, 148953184174080000, 126983900296423931904000000, 614812159599342234168301977600000000, 11942354952042770431904585727413846016000000000
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 12 2012

Keywords

Crossrefs

Programs

Formula

E.g.f.: 1/(1-x^7/7).

A210281 (8n)!/8^n.

Original entry on oeis.org

1, 5040, 326918592000, 1211813284635233280000, 64240926985765022013480960000000, 24899758399899222849902687670779904000000000, 47355329866546908076714664639943599847875543040000000000
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 12 2012

Keywords

Crossrefs

Programs

Formula

E.g.f.: 1/(1-x^8/8).
Showing 1-4 of 4 results.